
TJHSST Computer Systems Lab Senior
Research Project

Solving the Vehicle Routing Problem with
Multiple Multi-Capacity Vehicles

2008-2009

Michael Sanders

October 28, 2008

Abstract

The Vehicle Routing Problem (VRP) has existed as long as a dis-
tributor has needed to deliver items. As such, the VRP has been
solved with many different methods, including agent architecture and
ant colony modeling. However, these methods have generally been
set up for an established organization that has a specific number of
vehicles with only a few unique capacities. This project aims to cre-
ate a program that will solve the VRP, but in a case where all the
vehicles could have different capacities. This is the situation faced
by some volunteer groups that do not have established vehicle fleets
and rely on people volunteering vehicles when something needs to be
distributed.

Keywords: A* search, vehicle routing problem - List any special
vocabulary words that will apply to this research area.

1



1 Introduction

1.1 Scope of Study

There are two portions for this project. The first involving creating a program
to find the quickest route between two locations. This program will take
into account both the time required to traverse a road and the distance
traversed, as well as allot some time for stops. The second portion will map
all the delivery points and find the most effecient grouping of delivery points
to create the most efficient route. Knowledge required includes finding an
efficient heuristic for both the route finder and the route selector.

1.2 Expected results

The expected result is a program, when given a list of delivery points,
amount needed to be delivered to each point, and a list of vehicles with
given capacities, returns a list of routes that, when totaled, result in the
most efficient solution. The program will be capable of handling not only a
multi-capacity multi-vehicle routing problem, but also the original VRP. The
program should also not take much work to extend to the multi-depot VRP
(MDVRP). The project may yield insight into new heuristics to determine
the optimal routes when the program is assigning customers to routes and
routes to vehicles.

1.3 Type of research

This project is almost pure applied research. While it is almost entirely
designed solely to assist a volunteer group, some insight into heuristics may
be gained.

2 Background and review of current litera-

ture and research

The VRP has been looked into extensively, including the variants such as the
MDVRP and the VRP with Time Windows (VRPTW). Ant colony simula-
tion and mobile sensor networks have been used to solve this problem and its
variants. Mennell, Shmygelska, and Thangiah did a project to evaluate using

2



agents to solve the VRP. The program used agents to represent the vehicles
and “auctioneers” that informed the vehicles of the current situation with
regards to customers and deliveries. While the resulting program did not find
the optimal solutions for any the sample problems, it was extremely adapt-
able for the MDVRP and VRP with multi-capacity vehicles. This project
has given me some new considerations into how to write a route creator.

3 Procedures and Methodology

The first step is to create a program that, given a list of roads and inter-
sections, can quickly find the quickest route between two points. The next
step will be to create a program that creates routes by reading in the list
of delivery points and number and capacity of vehicles and utilizing the
previously-created route finder. The method of testing the final project will
be evaluating the results of the program against a human-generated list of
routes. While “most efficient” has not been defined, it will probably be mea-
sured by amount of product over distance traveled. The goal would be the
largest number, although this result could possibly be very time-costly. The
programming will be done in Ruby. The data needed is a list of all the roads
that a delivery point could be on or could be required to get to a delivery
point and a list of delivery points with amount needed to be delivered.

It may be possible at the end to have the program print out a list of
routes in a format that a program such as ArcView could turn in to a graphic
representation of routes.

The only method to test the final project will be to compare it against
what a human could do. The program’s result in a form such as product
delivered over distance traveled would be compared against a human’s result
in the same form. Also factored in would be the time required for the program
and the human to create their results.

Testing would involve using old databases of delivery points and amounts
to be delivered. To test each portion of the project, inputs with known best
results would be input and the result compared against the best known. The
route finder can be compared against commercially available programs online.
The route optimizer can be tested with data that would have intuitive best
results (such as three delivery points right next to each other) and evaluating
the results.

Requirements: Road data for the locality of deliveries-needs to have inter-

3



section data and geographic coordinates List of available vehicles and their
capacities-capacities needs to be standardized, i.e. number of specified ob-
jects that vehicle can carry List of delivery points

You could describe particular algorithms you’ll be using and learning
about.

4 Expected Results

The program should be usable by a volunteer group or similar organization
that needs to distribute items, but does not maintain a fleet of standardized
vehicles. The program should, in a reasonable amount of time, provide a list
of the most efficient routes with the best vehicle for that route. Efficiency
will most likely mean either distance or time is minimized. Graphically,
routes can be posted on a map. Routes can be displayed by statistics such
as distance traveled, time required, and amount of product delivered. Future
researchers can extend this problem to the case where the number and ca-
pacity of vehicles is not known ahead of time, which means the program will
have to actively recompute the solution each time a new vehicle is added to
the pool, which could be after a vehicle has left.

4


