
A Cellular Automata Approach to Population Modeling
Alexa Silverman, TJHSST Computer Systems Lab, 2008-2009

Abstract
Cellular automata (CA) are a very basic form of artificial intelligence, wherein
each individual cell on a grid only knows its own state, its neighbors’ states, and
a rule instructing when to change states. CA have recently begun to be used in
the field of agent-based modeling, which provides possible explanations for real-
world phenomena using emergent behavior based on the interactions between
individual agents. This project explores the usefulness of CA in modeling the
effects of temperature on a population, as well as the capabilities of the NetLogo
environment and Java’s Graphics package in running CA-based simulations.

Background
Cellular automata exist as ‘cells’ on a grid, wherein the behavior of each cell is
determined by the states of its eight neighboring cells. In this way, a cell acts as an
agent in an agent-based system. The "Life" collection of automata rules is based on the
idea that survival of individuals in a population requires an adequate number of
neighbors; that an individual can die due either to loneliness or overcrowding, and that
an individual is only born when a "family" of individuals is already present.

The rule used in this project to predict behavior is 14/3; in the terminology of Life
rules, this means that a live cell with one or four live neighbors will survive a
generation, and a dead cell with exactly three live neighbors will be replaced with a
new live cell. This inherently suggests that two types of individuals exist: one which is
less social (prefers one neighbor) and one which is more social (prefers four
neighbors). This program models the effects of temperature and population and vice
versa; population varies quadratically with temperature and temperature varies linearly
with changes in population.

Results
With default settings (temperature of 21 degrees Celsius, population density of 55 percent), the
population eventually dies off. This may provide a (highly simplified) explanation for the
phenomenon of global warming. This result is not always produced if the initial parameters are
changed. The amount of time after which the population takes a sharp decline varies from run to run
due to the nature of cellular automata to produce heterogeneous results. However, the trend remains
the same.

The program in the NetLogo interface.

1
13

25
37

49
61

73
85

97
5

9 17
21 29

33 41
45 53

57 65
69 77

81 89
93 101

105
109

113
117

121
125

129
133

137
141

145
149

153
157

161
165

169
173

177
181

185
189

193
197

201
205

209
213

217
221

225
229

233
237

241
245

249
253

257
261

265
269

273
277

281
285

289
293

297
301

305
309

313
317

321
325

329
333

337
341

345

0

500

1000

1500

2000

2500

Test results showing several test runs.

Development
The NetLogo program correctly runs the cellular automata rule 14/3 and allows
the user to select the initial population density. It also graphs the
percentage of live versus dead cells and provides population counts.
In test runs, the percentage and population of live cells are monitored.
Variations occur due to the introduced variable of initial population density
and the individual behavior of cells, which changes based on the random
placement of cells on the grid. The nature of cellular modeling produces
slightly different results with each run. After an initial temperature is
selected, temperature varies linearly with the changes in population (that is,
the difference between the current population and the population at the end of
the previous generation).
During a test run, monitors display the population count (number of live
cells), temperature in degrees Fahrenheit, and percentage filled of the grid
(ratio of live to dead cells in the grid). Two graphs display the changes in
temperature (in Celsius) and population over time. The user may also use the add
and remove walls buttons to draw walls around the cells, separating a section of
the population from the larger group. These walls cannot be crossed by cells and
are considered 'dead' by the cells but are unable to become alive at the next
generation.
In the Java program, cell interaction is accomplished via the cells being
considered as belonging to a Grid class. The Grid contains a matrix in which
each data point contains an individual cell, which knows its number of live
neighbors and its own state. A JPanel contains the Grid and Cells and a Timer
class that dictates the actions of the cells at each turn.

	Slide 1

