
A Cellular Automata Approach to Population Modeling
Alexa Silverman, TJHSST Computer Systems Lab, 2008-2009

Abstract
Cellular automata (CA) are a very basic form of artificial intelligence, wherein each
individual cell on a grid only knows its own state, its neighbors’ states, and a rule
instructing when to change states.This project explores the capabilities of the NetLogo
environment and the Java programming language in running CA-based simulations. In
two agent-based systems, CA are used to model the effects of temperature and virus
spread on a population.

Background
Cellular automata exist as ‘cells’ on a grid, wherein the behavior of each cell is
determined by the states of its eight neighboring cells. In this way, a cell acts as an
agent in an agent-based system. The "Life" collection of automata rules is based
on the idea that survival of individuals in a population requires an adequate number
of neighbors; that an individual can die due either to loneliness or overcrowding,
and that an individual is only born when a "family" of individuals is already present.

This program utilizes both NetLogo and Java in running simulations. NetLogo is
useful for its capabilities of running agent-based simulations and displaying their
results in its graphics interface. Java's object-oriented nature allows for the
creation of agents with more individual properties as well as allowing for easy
export of data to a file.

Results

With default settings (temperature of 21 degrees Celsius, population density of 55 percent), the
population eventually dies off. This may provide a (highly simplified) explanation for the phenomenon
of global warming. This result is not always produced if the initial parameters are changed. The
amount of time after which the population takes a sharp decline varies from run to run due to the
nature of cellular automata to produce heterogeneous results. However, the trend remains the same.

1 6121 41 81 101
6

11
16 26

31
36 46

51
56 66

71
76 86

91
96 106

111
116

121
126

131
136

141
146

151
156

161
166

171
176

181
186

191
196

201
206

211
216

221
226

231
236

241
246

251
256

261
266

271
276

281
286

291
296

301
306

311
316

321
326

331
336

341
346

0

500

1000

1500

2000

2500

Development
The project has two components, one based in NetLogo and the other in Java. The
NetLogo program runs the 14/3 Life rule, in which a live cell with one or four
neighbors survives the generation, and a dead cell with exactly three neighbors will
be born in the next generation. This rule was chosen because the growth of cells
mimics the growth and migration of populations over long periods of time. The cell
population is assigned a birth rate, which determines the likelihood of a dead cell to
be born. This birth rate varies quadratically with the system's temperature, having a
maximum when the temperature is 21 degrees Celsius. The temperature itself
varies directly with changes in population.

The user may change the initial parameters of temperature and population density,
after which the simulation runs in the graphic interface and results can be observed
both visually and as data in graphs of popultion and temperature over time.

The Java program runs the 23/3 Life rule, also known as Conway's Game of Life.
This rule was chosen because it mimics the behavior of a population over a shorter
time period. Cells are randomly assigned, in addition to the 'on' or 'off' state, a state
of 'infected' or 'healthy' at the beginning of the simulation. Infected cells have a 50%
chance of infecting healthy neighbors. The Java program displays agent
interactions visually using the Graphics package and also exports data about virus
spread to a file.

NetLogo component

Java component
After 100 test runs, in which the initial percentage of infected cells was increased by 1% for each
run, it appears that a general trend exists in which the percentage of infected cells decreases until
it stabilizes at about 20% infected. This seems to suggest that the simulation has a carrying
capacity for infected cells, but it is clear that if even a small percentage of cells are infected, the
virus will continue to infect cells.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

89
90

91
92

93
94

95
96

97
98

99
100

0

20

40

60

80

100

120

Virus Spread

Time

P
e

rc
e

nt
 I

nf
e

ct
e

d

Graph of population changes in five test runs.

Graph showing virus spread in three test runs with different initial infected percentages.

	Slide 1

