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Abstract
Cellular automata (CA) are a very basic form of artificial intelligence, wherein each 
individual cell on a grid only knows its own state, its neighbors’ states, and a rule 
instructing when to change states.This project explores the capabilities of the NetLogo 
environment and the Java programming language in running CA-based simulations. In 
two agent-based systems, CA are used to model the effects of temperature and virus 
spread on a population.

Background
Cellular automata exist as ‘cells’ on a grid, wherein the behavior of each cell is 
determined by the states of its eight neighboring cells.  In this way, a cell acts as an 
agent in an agent-based system.  The "Life" collection of automata rules is based 
on the idea that survival of individuals in a population requires an adequate number 
of neighbors; that an individual can die due either to loneliness or overcrowding, 
and that an individual is only born when a "family" of individuals is already present.

This program utilizes both NetLogo and Java in running simulations.  NetLogo is 
useful for its capabilities of running agent-based simulations and displaying their 
results in its graphics interface.  Java's object-oriented nature allows for the 
creation of agents with more individual properties as well as allowing for easy 
export of data to a file.

Results

With default settings (temperature of 21 degrees Celsius, population density of 55 percent), the 
population eventually dies off.  This may provide a (highly simplified) explanation for the phenomenon 
of global warming. This result is not always produced if the initial parameters are changed.  The 
amount of time after which the population takes a sharp decline varies from run to run due to the 
nature of cellular automata to produce heterogeneous results.  However, the trend remains the same. 
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Development
The project has two components, one based in NetLogo and the other in Java.  The 
NetLogo program runs the 14/3 Life rule, in which a live cell with one or four 
neighbors survives the generation, and a dead cell with exactly three neighbors will 
be born in the next generation.  This rule was chosen because the growth of cells 
mimics the growth and migration of populations over long periods of time.  The cell 
population is assigned a birth rate, which determines the likelihood of a dead cell to 
be born.  This birth rate varies quadratically with the system's temperature, having a 
maximum when the temperature is 21 degrees Celsius.  The temperature itself 
varies directly with changes in population.

The user may change the initial parameters of temperature and population density, 
after which the simulation runs in the graphic interface and results can be observed 
both visually and as data in graphs of popultion and temperature over time.  

The Java program runs the 23/3 Life rule, also known as Conway's Game of Life.  
This rule was chosen because it mimics the behavior of a population over a shorter 
time period.  Cells are randomly assigned, in addition to the 'on' or 'off' state, a state 
of 'infected' or 'healthy' at the beginning of the simulation.  Infected cells have a 50% 
chance of infecting healthy neighbors.  The Java program displays agent 
interactions visually using the Graphics package and also exports data about virus 
spread to a file.

NetLogo component

Java component
After 100 test runs, in which the initial percentage of infected cells was increased by 1% for each 
run, it appears that a general trend exists in which the percentage of infected cells decreases until 
it stabilizes at about 20% infected.  This seems to suggest that the simulation has a carrying 
capacity for infected cells, but it is clear that if even a small percentage of cells are infected, the 
virus will continue to infect cells.
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Graph of population changes in five test runs.

Graph showing virus spread in three test runs with different initial infected percentages.
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