Extraction of Individual Tracks from Polyphonic
Music

Nick Starr
January 30, 2009

Abstract

In this paper, we develop a method for the isolation of individual musi-
cal tracks from polyphonic tracks. The heart of the algorithm is the use of
Independent Component Analysis to separate the track, after which the com-
ponents are to be grouped into subspaces depending on the criteria desired
and recombined to put them back in a listenable format.

1 Introduction

The problem of source separation is one of very general applications. In general,
it is the task of being given a set of observed signals, which are assumed to be a
linear mixture of some set of source signals, and asked to find the original source
signals with no further information. For example, it is used in magnetic imaging
of the brain - interfering magnetic signals from other electronic equipment can be
filtered out to get a clearer picture of only the magnetic fields originating from the
imagine equipment. In this paper, however, source separation is applied to music.
A track of music, e.g. a popular song, is a (linear) mixture of individual sources,
those sources being the various instruments present. Techniques of source separation
can be applied to attempt to isolate those individual sources, or "tracks”, from a
sequence of fully polyphonic music.

Source separation is also an intriguing area of research since it’s obviously some-
thing that even a young child’s brain is capable of - if, all of a sudden, a loud and
distinctive instrument like a cowbell joins the mix, even the most musically un-
educated listener will immediately realize the change. Computationally, however,
explicitly determining this change is quite challenging and an area of active research.



2 Mathematical Background

It is assumed that the reader is familiar with the concepts of matrices and complex
numbers, but other important concepts that may be less generally known will be
defined here.

2.1 Matrix Transposition

The transpose of a matrix M, written M?, can be explained in various ways. One
way is to exchange the indices used to refer to individual elements, that is

M;; = M, (1)

Intuitively, what this does is "flip” the values of the matrix across the diagonal.
For example:
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With the diagonal values, of course, unchanged.

2.2 Eigenvalues and Eigenvectors

For a given matrix M, when multiplication of M by a column vector v results in
a scalar multiple \ of v, then v is called an eigenvector of M, with eigenvalue .

Explicitly, we have:
Mv = \v (3)

More generally, a linear operator L defined on a vector space V' (over a field F) is
said to have an eigenvector v with eigenvalue A when

Lv =)\v (4)

Where, of course, v is a member of V' and A is a member of F.

2.3 Short Time Fourier Transform

The Short Time Fourier Transform (STFT) is similar to a classical Fourier Transform.
In the continuous case, the signal function z(t) is multiplied by a window function
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Figure 1: Plot of the hamming window for N = 35

w(t) which is only non-zero for a short period of time. In our case, we use the
Hamming window, or "raised cosine” function, defined as

25 21 2mn
win) = 22— 2o cos(—) (5)

Then the traditional Fourier Transform is taken on this new signal function, while
7sliding” the window along through time, giving a two-dimensional representation of
the signal. Explicitly, we have that

X(r,w) = / r(t)w(t — 7)e “dt (6)
Where i is the imaginary unit /—1, 7 is the "slow” time, that is the time which is
being "slid” along the domain, and w is the frequency. Where the one-dimensional
Fourier Transform takes a function from the time domain to the frequency domain,
the STFT gives us X as a function of both time and frequency, although the time is
taken in a different sense than in the original signal.

However, in order to actually compute this transform, the discrete variant must
be used. For the discrete case, we make the changes in notation ¢ — n and 7 — m,
and then we have the discrete transform:

X(m,w) = Z x[n]wn — mle™ ™" (7)

n=—oo



This transform can be inverted by the following formula:

x[n] = %/_ﬂ Z X (m, w)e™"dw (8)

m=—00

2.4 Singular Value Decomposition

As described in [1], the Singular Value Decomposition (SVD) of a matrix X is given
by
X = UDV” (9)

Where D is a diagonal matrix of singular values in decreasing order, U = (uy, ..., u,,),
or the "row basis”, contains the eigenvectors of XX” | and analogously V = (vy, ..., v,,),
or the ”column basis”, contains the eigenvectors of X*X.

2.5 Source Separation

Source separation is the general framework in which the problem of extracting sound
tracks is framed. However, source separation apples to fields much broader than just
music. In the source separation model, we have a known vector of observed signals,
x, which is presumed to be the result of multiplying an unknown matrix A, called the
"mixing matrix”, with an unknown vector of source signals, s, or x = As. What this
means is that each individual measured signal is assumed to be a linear combination
of all the available signals, with the coefficients encoded in the matrix A. In index
notation (with n signals):

xTr; = Z Aiij (10)
7=0

The goal of source separation is to determine the source vector s purely from
knowledge of the observation vector x. This is done by determining A’s inverse, the
“unmixing matrix”, so that:

A'x=A"'As=s (11)

Or, in index notation:

S; = ZA;lej (12)
j=0



3 Technologies Used

3.1 C

The C Programming Language is used for the implementation of this algorithm,
compiled using gcc version 4.1.2 and GNU make version 3.81.

3.2 GNU Scientific Library

For most of the more computationally intensive mathematical procedures, the GNU
Scientific Library (GSL) is used.

4 Description of Algorithm

4.1 Decomposition

The initial input is raw audio data. It is transformed to the spectral domain via a
Short Time Fourier Transform (STFT) with n bins and m frames, from equation (7).
This complex data is split into moduli X and phases ®. The phases are only used
at the end to resynthesize the original audio. Then, X7 is decomposed according to

(9).
Next, a new matrix T is calculated from the following equation (where D is a sub-
matrix of the upper d rows of D):

T =DV’ (13)

This matrix T is then multiplied with the original moduli data X to produce X,
a reduced-rank, maximally informative representation of the data:

X =TX (14)
After the pseudo-invese A~! is calculated, and using the following two equations
E=A'X (15)

Fl=AT (16)

Then the individual sources can be recovered by multiplying one column of F
with the proper row of E. In index notation:

Sc - FucEcv (17)
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Where u € [1,n], v € [1,m] and ¢ € [1,d]. In order to recover the original version
of these components, an inverse STFT can be performed on S according to equation
(8), making use of the phase data ® that has been saved since the original STFT.

4.2 Classification

In the classification step, the individual components contained in the decomposition
step are evaluated by some criteria to separate them into appropriate subspaces for
recombination. Unfortunately, we have not reached this stage of our program yet
- however, there are examples of techniques in the literature. For example, in [2],
components representing percussive events were selected by analyzing the amplitude
envelope as it varies in time. Harmonic envelopes feature repeated plateaus, whereas
a percussive enveloped is more "on-and-off” - the attack is quick and the decay is
linear.

References
[1] Weisstein, Eric W. ”Singular Value Decomposi-
tion.” From MathWorld - A Wolfram Web Resource.

http://mathworld.wolfram.com/Singular ValueDecomposition.html

[2] Christian Uhle, Christian Dittmar, and Thomas Sporer,
4th International Symposium on Independent Component Analysis and Blind Signal Separation
Nara, Japan, 2003.




