COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2008-2009

1. Your name: ____Thomas Bettge_______, Period: __5_

2. Date of this version of your program: _10/28/08___

3. Project title: ___Sustainability in System Dynamics________

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

The only files needed to run my project are the NetLogo file for the project itself and the general NetLogo package, including the system dynamics modeler. The majority of my project is facilitated by algorithms that, rather than being explicitly coded, are implicit in the system dynamics model diagram. This is operated by means of stocks, flows, and controlled variables, some of which require basic if-else loops to provide the desired effect, but most of which operate as desired simply by virtue of their nature. The one exception to this so far are the periodic famines that I have added to the model, which are beyond the scope of system dynamics in NetLogo but do not corrupt the system dynamics nature of the project as a whole; rather, they add additional complexity and periodic fluctuations. This functionality is coded directly into the procedures tab of the main NetLogo interface.

My model takes user input primarily for two variables: famine magnitude (in percent of foodstuffs destroyed) and famine frequency (in years). These are controlled by sliders in the user interface, which allow the user to set the values of each from 1 to 100 and to experiment with different combinations. Input from myself comes in the form of parameters and relationship and variable definitions. For example, I choose just how much the amount of food per capita affects the starvation rate. However, with the exception of parameter values, these things remain mostly constant. Parameters values are frequently changed in order to test and analyze the model and provide new outcomes.

Output from my program comes in the NetLogo interface, which I have set up to display a graph of food and population over time, as well as monitors for these values as well as for food per capita. Additionally, the model diagram itself provides output of a sort, representing all the relationships of the model visually. Here is an example screenshot of the graph displayed:

My program crashes only when the values of certain stocks are too great for the program to mathematically process. To account for this, I have scaled my starting parameters down from the initial values, which were based on real life facts taken from the CIA World Factbook. Otherwise the program works nicely; NetLogo automatically compiles my code upon switching tabs and highlights erros and illegal statements, thus preventing errors from making their way to the testing phase.

The program performance must be tested after each new major addition to ensure that the system continues to function in a reasonable manner, as described above. Methods of testing include checking program data against real data from the CIA World Factbook, examining data for unanticipated aberrations, and checking the data trend against trends from similar models. For example, upon adding the famine functionality, I checked the trend against data from generic models with periodic perturbations and found that these generic trends supported the famine trend; therefore it was reasonable. As previously stated, I can perform specific structural and functional testing to examine the effects of new additions; sometimes, this may require other components to be disabled for simplification's sake. A large part of this functional testing would be dynamic testing, in which many different combinations of widely varying values for different parameters would be used to test functionality. Process modeling would be useless for trend comparison, but the use of mathematical relationships would probably not extend beyond graph comparisons.
5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

I plan to add additional functionality and complexity. One possible addition is that of catastrophic weather events, which would be more complex than famines because they would occur at random intervals and would affect both population and food. Another viable addition is population density; only so many people can live on so much space before it becomes unhealthy. I will also try to find a way to make the population truly and infinitely sustainable; population density caps may be a good step in this direction.
