
TJHSST Senior Research Project
Data Compression Through Duplicate Elimination and

Tagging
2008-2009

Jeffrey Thomas

February 17, 2009

Abstract

Data compression is a valuable tool to save
memory and time when sending data be-
tween computers. Although many different
methods exist, I believe to have created
a new method to compress data based on
simple probability and the concept of effec-
tive infinite data. This algorithm will also
potentially work with any kind of data, and
will always compress a significant amount
of data. I intend to test the effectiveness of
this algorithm in terms of both time saved
when sending large amounts of data and the
proportion of data compressed, and find the
optimal case of the inner variables.

1 Introduction - Problem

Statement and Purpose

In this paper, we will explore fully a com-
pletely original data compression method.
This method relies on two inner variables,
and can be run multiple times on compressed
data. The main will be to find the optimal
state in one iteration, if one exists. It is pos-
sible that the algorithm will have no optimal
state, as increasing the variables to infinity
will infinitely enhance the performance.

The algorithm will be tested on how
much data the algorithm compresses. The
data files it compresses will be randomly
generated to simulate large files. In theory,
the algorithm should be able to compress
large data files to an optimal proportion any
time it runs. This paper will test that claim.

If the algorithm is a success, it has the po-

1



tential to be exceptionally useful in the world
of computing, as it can perform on any type
of file, and should be able to optimally per-
form every time it runs.

2 Background

The main purpose of data compression is to
replace larger patterns of data with smaller
representations. In doing so, there are two
main methods; lossless, and lossy compres-
sion. Lossless compression does not lose
any data in the compression/decompression
process. It is used for data that requires
accuracy, such as program and text files.
Lossy compression allows for some data to
be lost in the process, and is used in com-
pressing images and other visual mediums
(Data-Compression.com).

A common method of data compression is
Huffman coding. This takes repeating sym-
bols or patterns and replaces them with a
smaller pattern or number that represents
that pattern (McGeoch).

This is valuable when compressing large
files with repetitious data, such as text files.
The downside is that if the probability of each
word or pattern is equal, then the efficiency
drops dramatically (Lelewer and Hirschberg).

Lossy compression is utilized in various im-
age compression. If certain colors are re-
duced in quality or removed altogether, the
human eye cannot tell the difference between
the compressed version and the original ver-
sion.

Figure 1: Pictures taken from [1], Page 494-
495

3 Development

3.1 The Algorithm

The algorithm I have developed works on the
concept of data large enough to be effectively
infinite and basic probability. Reading in
four bits, there are sixteen different bit
combinations that can be read. Of these
sixteen, four are duplicates, in that the
first two bits are identical to the last two
in both order and value. Thus, one-fourth
of the possible combinations are dupli-
cates. This ratio holds true for any group of
2 to the n bits, provided n is greater than one.

For clarification, G is the number of groups
analyzed at once, and B is the number of

2



bits each group has.

G groups of size B are analyzed. Each in-
dividual group is checked for duplicity. If it
is not a duplicate, nothing is done, and the
next group is analyzed. If it is, than only
half of the group is retained, and a marker
is placed before the entire stream denoting
which group, numerically, is a duplicate. The
marker is of size log(G)/log(2), rounded up.
After all of the groups are processed in this
manner, then one final marker is added in
front of all the data so far denoting how
many groups were duplicates. The entire
data stream is processed in this manner.

3.2 Data Storage

A large problem confronting this project was
how to store the data that was being pro-
cessed. Currently, 2 to the thirtieth power
elements of data are being processed. With
an inefficient method of storage, code runtime
can easily exceed several hours. By using an
ArrayList, I was able to cut runtime down to
minutes. However, the amount of data ex-
ceeded the maximum size of the ArrayList.
To remedy this problem, I placed the data in
an ArrayList of ArrayLists, with each indi-
vidual ArrayList holding one hundred thou-
sand elements.

References

[1] McGeoch, Catherine C. ”Data Com-
pression.” The American Mathematical
Monthly 100: 493-497. 31 Oct. 2008

”¡http://www.jstor.org/stable/2324310?seq=1&Search=yes&term=
data&term=compression&list=hide&searchUri=%2Faction%2FdoBasic
Search%3FQuery%3Ddata%2Bcompression%26x%3D1%26y%3D10%26
wc%3Don&item=15&ttl=16184&returnArticleService=showArticle&
resultsServiceName=doBasicResultsFromArticle¿”.

[2] Data-Compression.com. EEF.
31 Oct. 2008 ¡http://www.data-
compression.com/index.shtml¿

[3] Lelewer, Debra A, and Daniel
S Hirschberg. ”Data Compres-
sion.” Data Compression. Univer-
sity of California. 31 Oct. 2008
¡http://www.ics.uci.edu/ dan/pubs/DataCompression.html¿.
Research Paper

3


