
TJHSST Senior Research Project
Data Compression Through Duplicate

Elimination and Tagging
2008-2009

Jeffrey Thomas

June 10, 2009

Abstract

Data compression is a valuable tool to save memory and time when
sending data between computers. Although many different methods
exist, I believe to have created a new method to compress data based
on simple probability and the concept of effective infinite data. This
algorithm will also potentially work with any kind of data, and will
always compress a significant amount of data. I intend to test the
effectiveness of this algorithm in terms of both time saved when send-
ing large amounts of data and the proportion of data compressed, and
find the optimal case of the inner variables.

1 Introduction - Problem Statement and Pur-

pose

In this paper, we will explore fully a completely original data compression
method. This method relies on two inner variables, and can be run multiple
times on compressed data. The main will be to find the optimal state in
one iteration, if one exists. It is possible that the algorithm will have no
optimal state, as increasing the variables to infinity will infinitely enhance

1



the performance.

The algorithm will be tested on how much data the algorithm compresses.
The data files it compresses will be randomly generated to simulate large files.
In theory, the algorithm should be able to compress large data files to an op-
timal proportion any time it runs. This paper will test that claim.

If the algorithm is a success, it has the potential to be exceptionally useful
in the world of computing, as it can perform on any type of file, and should
be able to optimally perform every time it runs.

2 Background

The main purpose of data compression is to replace larger patterns of data
with smaller representations. In doing so, there are two main methods; loss-
less, and lossy compression. Lossless compression does not lose any data
in the compression/decompression process. It is used for data that requires
accuracy, such as program and text files. Lossy compression allows for some
data to be lost in the process, and is used in compressing images and other
visual mediums (Data-Compression.com).

A common method of data compression is Huffman coding. This takes
repeating symbols or patterns and replaces them with a smaller pattern or
number that represents that pattern (McGeoch).

This is valuable when compressing large files with repetitious data, such
as text files. The downside is that if the probability of each word or pattern
is equal, then the efficiency drops dramatically (Lelewer and Hirschberg).

Lossy compression is utilized in various image compression. If certain
colors are reduced in quality or removed altogether, the human eye cannot
tell the difference between the compressed version and the original version.

2



Figure 1: Pictures taken from [1], Page 494-495

3 Development

3.1 The Algorithm

The algorithm I have developed works on the concept of data large enough
to be considered effectively infinite and basic probability. Reading in four
bits, there are sixteen different bit combinations that can be read. Of these
sixteen, four are duplicates, in that the first two bits are identical to the last
two in both order and value. Thus, one-fourth of the possible combinations
are duplicates. This ratio holds true for any group of 2 to the n bits, provided
n is greater than one. If the amount of data compared to the size of the bit
pattern is very large, it could be considered effectively infinite. With nearly
infinite data, basic probability dictates that each possible pattern of bits will
have an equal chance of appearing. Thus, the duplicate patterns will appear
in 1/4 of the bit patterns in the data.

For clarification, G is the number of groups analyzed at once, and B is
the number of bits each group has.

3



G groups of size B are analyzed. Each individual group is checked for
duplicity. If it is not a duplicate, nothing is done, and the next group is
analyzed. If it is, than only half of the group is retained, and a marker
is placed before the entire stream denoting which group, numerically, is a
duplicate. The marker is of size log(G)/log(2), rounded up. After all of the
groups are processed in this manner, then one final marker is added in front
of all the data so far denoting how many groups were duplicates. The entire
data stream is processed in this manner.

3.2 Data Storage

A large problem confronting this project was how to store the data that was
being processed. Currently, 2 to the thirtieth power elements of data are
being processed. With an inefficient method of storage, code runtime can
easily exceed several hours. By using an ArrayList, I was able to cut runtime
down to minutes. However, the amount of data exceeded the maximum size
of the ArrayList. Two different solutions were attempted. The first involved
using a single ArrayList filled with Strings. Each String would act as an array
for characters. When this was implemented, runtime was over six hours. To
remedy this problem, I placed the data in an ArrayList of ArrayLists, with
each individual ArrayList holding one hundred thousand elements.

4 Testing

4.1 Methodology

The algorithm was judged by the total percentage of data saved from the
initial set to the final set. Exponents of one through eight were tested with
group sizes of 2 to the 0 through eigth power. Each set of values was tested
twenty times, then averaged to find the final percentage of data saved.

4.2 Exceptions

For values of the variables less than 3, the program encountered an Out-
OfMemoryError. With no way to increase the amount of memory allocated
to the program, we were forced to lower the number of data elements. This
should not impact results, as the final results are based off of a percentage.

4



Additionaly, the data is large enough to be considered effectively infinite in
all cases anyway.

5 Results

This is the data. The columns are constant exponents, while the rows are
contant set sizes.

5



6 Conclusions

After significant testing, we have concluded that this method of data com-
pression is not a viable method for widespread use. The data shows that
increasing either of the variables, contrary to our expectations, decreased
the efficiency of the algorithm, eventually making it zero, or a negative per-
centage.

However, it is important to note that there is potential for additional
testing. We were limited by the amount of memory we could devote to
this program, which was automatically set by the system we used. If more
memory could be devoted to this program, a greater amount of data could
be tested. This may change the results of our larger variables. Due to time
constraints, the program itself was not optimized. Should there be an error or
inefficient method in the program, this would significantly limit the amount
of data we could test the algorithm with, as more memory would be devoted
to running the program itself and not storing the data.

Even with additional testing, it would be difficult for this method to
become viable. For larger exponent values, the amount of data required to
hold one copy of every possible pattern of bits becomes immense. (INSERT
GRAPH HERE)

6



References

[1] McGeoch, Catherine C. ”Data Compression.” The Amer-
ican Mathematical Monthly 100: 493-497. 31 Oct. 2008
”¡http://www.jstor.org/stable/2324310?seq=1&Search=yes&term=
data&term=compression&list=hide&searchUri=%2Faction%2FdoBasic
Search%3FQuery%3Ddata%2Bcompression%26x%3D1%26y%3D10%26
wc%3Don&item=15&ttl=16184&returnArticleService=showArticle&
resultsServiceName=doBasicResultsFromArticle¿”.

[2] Data-Compression.com. EEF. 31 Oct. 2008 ¡http://www.data-
compression.com/index.shtml¿

[3] Lelewer, Debra A, and Daniel S Hirschberg. ”Data Compres-
sion.” Data Compression. University of California. 31 Oct. 2008
¡http://www.ics.uci.edu/ dan/pubs/DataCompression.html¿. Research
Paper

7


