Project Description



Student: Jeffrey Thomas
 
Title: Data Compression Through Duplicate Elimination and Tagging

Background: 


Data compression is a valuable tool in computing. With program sizes increasing dramatically, computers either need to get more memory, or compress the data. As it takes significantly more energy to send a single bit than perform an operation on it, compressing data saves both memory and energy. I have developed an original data compression algorithm that may be viable for widespread use.

Description: 


The algorithm I have developed works on the concept of data large enough to be considered effectively infinite and basic probability. Reading in four bits, there are sixteen different bit combinations that can be read. Of these sixteen, four are duplicates, in that the first two bits are identical to the last two in both order and value. Thus, one-fourth of the possible combinations are duplicates. This ratio holds true for any group of 2 to the n bits, provided n is greater than one. If the amount of data compared to the size of the bit pattern is very large, it could be considered effectively infinite. With nearly infinite data, basic probability dictates that each possible pattern of bits will have an equal chance of appearing. Thus, the duplicate patterns will appear in 1/4 of the bit patterns in the data.


For clarification, G is the number of groups analyzed at once, and B is the number of bits each group has.


G groups of size B are analyzed. Each individual group is checked for duplicity. If it is not a duplicate, nothing is done, and the next group is analyzed. If it is, than only half of the group is retained, and a marker is placed before the entire stream denoting which group, numerically, is a duplicate. The marker is of size log(G)/log(2), rounded up. After all of the groups are processed in this manner, then one final marker is added in front of all the data so far denoting how many groups were duplicates. The entire data stream is processed in this manner.


Such an algorithm has two main advantages. The first is that it can be performed on any file type, and actually will theoretically perform better on larger files. The second is that it will theoretically perform at a constant efficiency regardless of the data it is compressing. The only thing that matters is the size of the data.

