Project Description (also sometimes called Project Abstract)

Student: Brian Tubergen

Title: Creating a 2-D Model of the Solar System Using Physics-Based Geometries in Java

Background:

Basic models of the Solar System that involve predetermined paths for planets according to circular or even elliptical orbits can be effective for simply estimating the basic motion of the planets, but these models are limited in that they aren't physically accurate and fail to account for possible unexpected changes in the solar system. A more advanced model that would solve these issues, however, requires iterative physics calculations for an N-body problem. A model that implemented these calculations would be useful for orbital visualization. Additionally, this model could be modified to allow additional solar bodies to be added to the system the system, and the Solar System’s reaction to those bodies' presence could be observed and used for experimentation. This project, therefore, seeks to create a solar system simulation that graphically illustrates a basic Keplerian model of the inner solar system using Newtonian gravitation calculations, with the hope that others could expand on its model in the future by using its physics for intrusive body experimentation.

Description:

The previous section discussed the limitations of previous projects and how my program plans to expand on them; this section discusses the specifics of how my program works. As previously mentioned, algorithms follow a Keplerian model using iteratively calculated accelerations. Time steps can be changed to alter simulation speed and precision. Data is gathered from the real world both to set initial positions and velocities and to compare my simulation’s output to actual results.

The display class creates the planetary objects and handles the program’s graphical output. It then loops over some number of time steps. At each time step it renders planetary sprites onto a predetermined background, telling the planet objects to update their positions, and updating the graphics on-screen.

At each time step, the display class passes each planet object an array of the current positions of all the planets. The net acceleration of each planet is calculated relative to all of the other planets; Each individual planet loops over the array of all the other planets and calculates it’s net acceleration based on the equation a = G*m/r^2. It then updates it’s velocity and position accordingly, and the display class updates the graphical display accordingly after all planets have finished these calculations.

Data for real world planetary systems has been gathered from NASA’s Horizons system from March 13, 2006 to March 13, 20067. Initial values for my program were adjusted to match initial values on March 13, 2006. Position data output from my simulation is uploaded to a text file while my simulation runs. Following completion of one year, that data is then compared to NASA’s data at certain instances, and statistical analysis is done to verify the accuracy of my simulation.

