
TJHSST Computer Systems Lab Senior
Research Project Paper

Naive Bayes Classification
2008-2009

Christina Wallin
Period 3

October 31, 2008

Abstract

One part of computational linguistics is the classification and com-
parison of texts into classes. This comparison could be author classi-
fication, spam filtering, or in the case of this project, the classification
of texts from different genres of news stories. The goal of the project
is to be able to classify a text as belonging to one of two classes based
on the actual words in the text. This method of classification is called
a naive Bayes classifier. In this age of huge amounts of data available
online, a classifier which could discriminate between two types of news
could be increasingly useful.

Keywords: naive Bayes classifier, computational linguistics, mul-
tivariate Bernoulli event model, Laplace smoothing

1 Introduction

The naive Bayes classification is a relatively simple method for classifying
texts. It is based on the false assumption that all of the variables, in this
case words in the documents, are independent of each other. For example,
if the text was a science story and contained the word ”rover,” it would

1



most probably also have the word ”Mars.” This project is done to achieve
fundamental understanding concerning the effectiveness of the naive Bayes
as compared to other methods, and to find a way of improving upon the
performance of this classifier. However, it is also done to try to provide a
way for news stories from different genres to be classified. In this age with
huge amounts of data popping up on the internet every day, an effective way
to sift through the texts with classification will be essential.

The Naive Bayes classifier works by first training the computer with data
in order to find the relative probabilities of words for each class of texts.
Then, because it makes the assumption that all of the variables are indepen-
dent, it can find the probability that a specific text is in a class. At first,
I will write a single variable model, which does not take into account the
frequency of the occurance of a word in the text, but merely its presence or
absence. In latter quarters I hope to be able to optimize the algorithm by
making a multivariate Bernoulli event model (explained later) and discrimi-
nating words based on stems instead of the actual form by using a stemmer
(probably the Porter stemmer)–e.g. walking and walked would be counted
as the same word–and perhaps, if time permits, coding another classification
method in order to compare its effectiveness to that of the naive Bayes.

My prospective results would be the number/percentage of texts classified
correctly. The 20 Newsgroup database is divided into training and test sets,
so I will be able to use that as a constant for training and testing differnet
versions of the program. The results would be comparing the effectiveness
of the method for two different sets of genres of news (with the data coming
from the 20 Newsgroups) and later comparing the effectiveness of the naive
Bayes classifier with one using the multivariate Bernoulli model or another
classification system. This study would add more data as to whether or
not the Naive Bayes classification system, sometimes even called the ”Idiot’s
Bayes,” is effective compared to other methods.

2 Background

There have been many studies which have used the naive Bayesian classifica-
tion method, for the method itself has been around for a very long time. The
first paper that made the Bayesian assumption that all of the variables were
independent was written in 1966: ”Construction of a model for computer-
assisted diagnosis: an application to the problem of non-toxic goitre” by

2



Boyle et al. A reference to the previous paper was found in the paper ”Id-
iot’s Bayes–Not So Stupid After All?” by David Hand and Keming Yu, which
using theoretical and real data situations shows that the Naive Bayes is not
a horrible method because of its false assumption that all of the variables (in
my case, occurances of words) are independent. This paper is essentially a
review of past uses of naive Bayes and the conclusions of those researchers
and a theoretical treatise as to why the naive Bayes is effective. Most of the
studies talked about in this paper are medical diagnosis studies, and so text
classification is a slightly different way of approaching naive Bayes classifiers.

Another element of this project is the fact that since it deals with the
actual text of the words, it is also computational linguistics. So, it is ac-
tually the intersection of linguistics and machine learning. For a different
linguistic classification problem, dialectology, or the study of how language
varies over geographical regions, the study ”Linguistic Variation and Com-
position” by John Nerbonne details how computational methods can be used
to more effectively study language variation. One method which was used
to increase the effectiveness of the computational linguistic techniques used
was the Porter stemmer, which when given a string gives back its stem. The
stemmer extracts the essential information out of a string and allows words
which are just forms of the same word (e.g. stops, stopping) to be consid-
ered as such. This stemming eliminates morphological data, but it helps with
understanding the lexical data, and for text classification the morphological
part is inessential. Thus, I could see whether or not using a Porter stemmer
would help with classification. I was not able to find any other uses of this
stemmer, so perhaps this experimentation would be original research.

3 Procedures and methodology

3.1 Programming Language and Other Tools

The programming language used for these manipulations is Python. An
aid for the linguistic sorts of operations is the nltk package, the Natural
Language Toolkit. This package provides capabilities like the Porter stemmer
programmed into it, and also has methods for displaying the data with the
PyLab package. The PyLab package is a method of making graphs and
charts, very much like matlab. Visuals can be made of the probabilities that
selected words occur in each class, as compared to a text to be classified.

3



With the multivariate model, a graph of selected frequencies of words in the
sample text would also be beneficial. These charts would help the viewer
understand the processes the computer is going through as it compares the
text and the probability vectors.

The database which I will be using to classify texts is the 20 Newsgroups
database. There are 20 different genres of news stories, and it is divided into
training and testing sets. The training and testing sets are separated in time
by a little, and so it is more realistic.

3.2 Current progress

For the first quarter version, I have focused on researching how to make a
naive Bayes classifier and creating the first section of it. The first quarter
version reads in a text and parses the string to remove all punctuation and
capitalization. Then, it creates a dictionary of words occurring in that text
and their frequencies. This step is in anticipation of the next part of the
program, which is to create a probability vector (PFX) for each class. The
program has been tested by using small data sets and checking manually
whether or not the frequencies were correct. The portion which used regular
expressions to remove punctuation was tested by printing out the parsed
strings and seeing if the regular expression did the correct operation.

With this program, the frequencies of words in different sorts of texts can
be compared. The differences in words in different genres of news is the basic
premise behind the Naive Bayes classifier, and a visual representation with
pylab of the top 20 frequent words is in Figures 1 and 2. The two news stories
which were used were about space science and baseball respectively, and they
were approximately the same length. One difference which is striking is that
the baseball text has quite a few words which are the most frequent which
deal with baseball, while the only word in the top 20 with respect to frequence
which is even remotely science-related in the space article is ”black”. This
difference suggests that the scientific writing is more verbose and less to the
point than the baseball writing. This perhaps would not be the case with
different articles in the same genre, but the correlation is interesting.

3.3 Future design/theory

The calculation of frequencies is a step in anticipation of the next part of
the program, which is to create a probability vector (PFX) for each class.

4



20 most frequent words
in a text from

sci.space 

Figure 1: The frequency of the top twenty most frequent words in the
sci.space genre from the 20 Newsgroups database, plotted with PyLab.

5



20 most frequent words in 
a text from 

rec.sports.baseball

Figure 2: The frequency of the top twenty most frequent words in the
rec.sports.baseball genre from the 20 Newsgroups database, plotted with Py-
Lab.

6



This first model is not multivariate, which means that it does not take into
account multiple occurances of a word in a document. So, in this case, the
probability vector is a dictionary of all of the words occurring in the test
cases with the probability for each variable (word) the number of times the
word occurs in a text of the class divided by the total number of texts in the
class. Then, 1 needs to be added to both the top and the bottom, so that
there is never a probability of zero that a term occurs. That process is called
Laplace smoothing, and it accounts for words which are not found in the
training cases but may be found in the test cases. Thus, for each individual
text, the probability vector is binary, with a 1 if the word is in the text and
a 0 if it is not.

Then with this probability vector for each class, by Bayes’ theorum which
states that each vector is independent, you can calculate the probability that
a text is of a specific class by generating the probability vector for that specific
text and comparing it to the PFX for each class. For this, each variable
(i.e. the occurance or non-occurance of each word) has to be calculated
in order to form the probability that it is in a particular class. Then, the
individual probabilities would usually be multiplied in order to determine
what the probability would be. However, the multiplication can sometimes
have problems, and so it is better to take the sum of the logarithms of the
probabilities that the variable is an element of the class.

Once the second part of the project is completed and the program can
convert from the PFX to the probability that a given text is in a class, the
basic naive Bayes is complete. It can then be tested with different genres of
news (see testing below). An extension is the multivariate Bernoulli event
model, which essentially is the same thing except it takes into account the
frequencies of the words within the texts themselves.

3.3.1 Bayes’ Theory

For the most part I describe the algorithms above, but one thing which
needs to be clarified is the assumption central to the naive Bayes classifier–
Bayes’ Theory. This theory states that all of the variables are independent
in their determination of the class. In this case, the variables are individual
words. The assumption is obviously false, because certain words usually
occur together. For example, in a news article in the genre of news about
space, if the word ’rover’ occurs, the word ’Mars’ is more likely to occur.
However, even though the assumption is false the naive Bayes classifier is a

7



rather effective tool for classification.

3.4 Future Testing

As far as testing goes, the 20 Newsgroup database from which the news
stories come is separated into training and testing sets. The testing sets
come in folders with the correct class in the name, and so with Python
methods to check the folder from which the text came whether or not the
class was correctly determined can be showed. However, the fact that the
program produces the correct class does not mean that the algorithm is
working correctly. So, the tests cannot solely be based on that.

One way to test the program is to test the components. You can see
whether or not the probability vector is determined properly for a very small
data set, and if it works on a small scale it should also work on a large
scale. The naive Bayes itself can be tested with specific small data sets.
One example for the multivariate model from http://nlp.stanford.edu/IR-
book/html/htmledition/naive-bayes-text-classification-1.html contains only
4 training texts and one testing text for a total of 14 words, but it can
classify certain words correctly.

4 Results and End Material

Since this is just the first quarter version, I do not really have any results to
report. However, by the next quarter I hope to have a working Naive Bayes
classifier which I could test with different data sets and other changes. I
expect to get a percentage of test cases in which the Naive Bayes classifier
is successful after being trained with the training cases. Using Pylab, I can
plot the percentage of test cases successful and failed for classification as a
pie chart. I can also give the reader a view of what is happening with the
algorithm by plotting the probability of selected words from each class, which
is made with the training data. On this plot I can also include whether or
not that word is present in a sample test case. The plot of the most probable
words would also gain insight as to what words are key to each class.

My prospective results could help other researchers know the relationship
of the naive Bayes classifier to the multivariate Bernoulli event model and
perhaps another classification system. They would be able to build upon
this information by potentially doing another classification method (perhaps

8



using neural networks) and using the same testing and training data and
comparing the results.

References

[1] David J. Hand and Keming Yu, “Idiot’s Bayes: Not So Stupid after All?’,
International Statistical Review / Revue Internationale de Statistique 68,
pp. 385-398, December 2001.

[2] John Nerbonne, “Linguistic variation and computation”, EACL ’03:
Proceedings of the tenth conference on European chapter of the Asso-
ciation for Computational Linguistics, pp. 3–10, 2003.

[3] http://nltk.sourceforge.net/index.php/Book

[4] http://matplotlib.sourceforge.net/

[5] http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-
classification-1.html

9


