
TJHSST Computer Systems Laboratory
Senior Research Project Paper

Naive Bayes Classification
2008-2009

Christina Wallin
Period 3

April 1, 2009

Abstract
One application of computational linguistics is the classification and comparison of

documents by computers. This project uses a naive Bayes classifier to classify a text as
belonging to one of two classes based on the actual words in the text. It also compares
the performance of a multivariate and multinomial types of naive Bayes classifiers, and
optimizes the classification with parsing and other methods. With huge amounts of
data becoming available online, a classifier which discriminates between two types of
news will be increasingly useful.

Keywords: naive Bayes classifier, computational linguistics, binary independence
model, Laplace smoothing, multivariate Bernoulli event model, multinomial event
model

1 Introduction

The naive Bayes classification is a relatively simple method for classifying texts. It is based
on the false assumption that all of the variables, in this case words in the documents, are
independent of each other. For example, if a science article contained the word “rover,”
it would most likely also have the word “Mars.” However, the naive Bayes would not take
the added probability into account. This goal of project is to compare two different types
of naive Bayes classifers, the multivariate Bernoulli event model and the multinomial event
model, and to optimize the performance of these classifiers. With the great propagation of
data on the Internet, an effective way to sift through the texts by means of classification will
be essential.

The naive Bayes classifier in general works by first training the computer with data in
order to find the relative probabilities of words for each class of texts. Then, because it

1



makes the assumption that all of the variables are independent, it can find the probability
that a specific text is in a class. At first, I have written a binary independence model, called
so because it compares only two classes [4]. It is also classified as a multivariate Bernoulli
event model because does not take into account the frequency of the occurrence of a specific
word in the text, but merely its presence or absence [6]. My current naive Bayes also can
discriminate words based on their stem instead of the actual form using a Porter stemmer,
by which “walking” and “walked” would be counted as the same word.

The 20Newsgroups database [9], the data set used for classification, is divided into train-
ing and test sets, so I will be able to use that quality as a constant for training and testing
different versions of the program. The method for determining the effectiveness of a classi-
fication system is the percentage of the test sets classified correctly.

Later in the year, I hope to optimize the algorithm by making a multinomial event
model (explained below). I also will consider other optimizations such as accounting for the
length of the texts and analyzing the data itself to see which sorts of texts are the best for
classification.

2 Background

There have been many studies which have used the naive Bayesian classification method,
and it was first used in a published paper in 1966 for a medical study on computer-assisted
diagnosis [1]. Hand and Yu (2001) reviewed past uses of the naive Bayesian method for clas-
sification. Using theoretical and real data situations, they showed that the naive Bayes is
not an excessively inaccurate method because of its false assumption that all of the variables,
which in my project are occurrences of words, are independent [2]. Shen and Jiang (2003)
explain a way to improve the naive Bayes by combining it with logistic regression, another
method of classification involving a more complicated mathematical model to determine the
probability that each variable is in the class. The naive Bayes method itself is a bit over-
confident in classification, and so by combining it with logistic regression, the classification
is improved [10].

Additionally, there are several different ways to implement a naive Bayes classifier. Mac-
Callum and Nigam (1998) describe two common methods which I will use in my project, the
multivariate Bernoulli event model and the multivariate event model. I first started coding
the multivariate model, which keeps track of whether a word occurs or does not occur in a
document. When it is calculating the probability that the document is a member of a specific
class, it includes the probability both for the occurrence and non-occurrence of words. The
multinomial model, however, which I will start this quarter, keeps track of the frequency
of each word in the document. The multinomial is almost always more effective than the
multivariate method, except for very small vocabulary sizes [6].

This project, since it both trains the computer to recognize the classes and deals with
the words themselves in the text, is indeed at the intersection of linguistics and machine
learning. For a different linguistic classification problem, dialectology, or the study of how
language varies over geographical regions, Nerbonne (2003) explains computational methods

2



which can increase the accuracy of the language study, specifically by lemmatizing the words,
getting the root word. Since actual lemmatization is very difficult, this study used a Porter
stemmer to approximate lemmatization with stemming. This stemmer, when given a word,
gives back its stem based on various rules. The stemmer extracts the essential information
out of a string and allows words which are just forms of the same word (e.g. stops, stopping)
to be considered as such. This stemming eliminates morphological data, but it helps with
understanding the lexical data, and for text classification the morphological part is inessential
[7]. Thus, I am experimenting to see whether or not a Porter stemmer would aid in my
classification.

There are also three different types of words in a file, according to Korutchev and Ko-
rutcheva (2008). They are specific terms or keywords, which occur much more often in the
file than in the general vocabulary, function words like “the” and “and,” which are essential
for meaning and occur rather frequently throughout the vocabulary, and common words,
which have meaning but are not specific to a specific sort of text (for example, the word
“explain”). Thus, if you find both the frequency of words for the general vocabulary and
in a specific class, you can calculate some of the keywords of a document [3]. Using this
principle, my classifier could potentially be more accurate if I weighted the words which are
more frequent compared to the vocabulary as a whole more.

3 Development

3.1 Programming Language

The programming language used for these manipulations is Python. An aid for the linguistic
sorts of operations is the nltk package, the Natural Language Toolkit [8]. This package
provides capabilities like the Porter stemmer programmed into it, and also has methods for
displaying the data with the PyLab package [5]. The PyLab package is a method of making
graphs and charts, very much like matlab. Visuals can be made of the probabilities that
selected words occur in each class, as compared to a text to be classified. These charts help
the viewer understand the processes the computer is going through as it compares the text
and the probability vectors.

3.2 Corpus

The corpus which I am using to classify texts is the 20Newsgroups database. There are 20
different genres of news stories, and it is divided into training and testing sets. The training
and testing sets are separated in time by a little, and so it is more realistic. Selected genres
of news are comp.graphics, rec.sport.baseball, talk.politics.mideast, and sci.space.

3



3.3 Dictionary formation

The overall design of a naive Bayes classifier can be found in Figure 1. First, the program
reads in a file from the 20Newsgroups database or another source and parses it to remove all
punctuation and capitalization. Regular expressions were used to remove all punctuation,
and Python’s built-in methods for strings were used to change everything to lower case.
Then, it creates a dictionary of words occurring in that text and their frequencies. During
the formation of the dictionary, a boolean turns on and off stemming by the Porter stemmer.

file.py train.py test.py

makeDict()

File Train

makePFX()
Probability text 
classified correctly

classification

Figure 1: A model of the files and basic operations in the naive Bayes classifier.

4



3.4 Probability vector formation

The next step is to train the program as to what characteristics each class has. I did this
with a probability vector (PFX) for each class based on the words occurring in them. This
vector can be calculated in several different ways. The two methods I used were multivariate
and multinomial event models.

3.4.1 Multivariate event model

This first model I created is multivariate, which means that it does not take into account
multiple occurrences of a word in a document. For each individual text, the probability
vector is binary, with a 1 if the word is in the text and a 0 if it is not. The probability vector
for the class as a whole is a dictionary of all of the words occurring in the test cases with
the probability for each variable (word) being the number of texts in the class which contain
the word divided by the total number of texts in the class. Then, 1 needs to be added to
the top and the size of the vocabulary to the bottom, so that there is never a probability of
0 that a term occurs. That process is called Laplace smoothing, and it accounts for words
which are not found in the training cases but may be found in the test cases.

3.4.2 Multinomial event model

The second model, created during third quarter, is a multinomial model, meaning that it
takes into account the number of occurrences total, not only the number of files in which the
word occurs. The probability vector for each individual text is the frequency of the word
in that text. The probability vector for the class as a whole is again a dictionary of all
of the words occurring in any text in the two classes being compared, with the probability
being the number of times the word occurs throughout all of the classes divided by the total
number of words. Then, by Laplace smoothing, one must be added to the top and the size
of the vocabulary to the bottom, so that there is never a probability of zero.

3.5 Classification

Then with this probability vector for each class, by Bayes’ theorem which states that each
vector is independent, you can calculate the probability that a text is of a specific class
by generating the probability vector for that specific text and comparing it to the PFX for
each class, thereby classifying the texts. For this, each variable (i.e. the occurrence or non-
occurrence of each word) has to be calculated in order to form the probability that it is in a
particular class. Then, the individual probabilities would usually be multiplied in order to
determine what the probability would be. However, the multiplication can sometimes have
problems, and so it is better to take the sum of the logarithms of the probabilities that the
variable is an element of the class.

5



3.5.1 Bayes’ theorem

Bayes’ theorem is the assumption central to the naive Bayes classifier. This theorum states
that all of the variables are independent in their determination of the class. In this case,
the variables are individual words. The assumption is obviously false, because certain words
usually occur together. For example, in a news article in the genre of news about space, if
the word ’rover’ occurs, the word ’Mars’ is more likely to occur. However, even though the
assumption is false the naive Bayes classifier is a rather effective tool for classification[4].

3.6 Future design

Next quarter, I will improve upon my multinomial model, accounting for the lenghts of the
texts. This will make my multinomial model better, because a word occurring two times in
a 50 word text is more significant than a word occurring two times in a 200 word text. I will
also experiment with weighting words which occur more often in the document than in the
overall global vocabulary more. I will also make a program to keep track of the lengths of
the files, as well as other data, to determine whether certain characteristics of the training
set influence the classification.

4 Testing

As far as testing goes, the 20Newsgroups database from which the news stories come is
separated into training and testing sets. The testing sets come in folders with the correct
class in the name, and so with Python methods to check the folder from which the text came
whether or not the class was correctly determined can be showed. However, the fact that the
program produces the correct class does not mean that the algorithm is working correctly.
So, the tests cannot solely be based on that.

4.1 Dictionary formation

The program has been tested by using small data sets and checking manually whether or
not the frequencies were correct. The portion which used regular expressions to remove
punctuation was tested by printing out the parsed strings and seeing if the regular expression
did the correct operation.

4.2 Manual testing

I test the program initially by seeing whether the individual components work. For example,
I determine whether or not the probability vector is determined properly for a very small
data set, and if it works on a small scale it should also work on a large scale. The naive
Bayes itself is an algorithm of the sort that can be tested with specific small data sets.
Additionally, Shen and Jiang (2003) also use the 20Newsgroups corpus for the naive Bayes
classifier, so I can check the performance of my naive Bayes classifier against theirs. My

6



percentages correctly classified are both higher and lower than theirs for the multivariate
(see Table 1), suggesting that my naive Bayes is overconfident. However, the percentages in
the article are for only 90 percent of the training data being used, while I use all of it, and I
am estimating the percentages from the article off of a graph. This would indeed make mine
more accurate, though I do not know how much more accurate it would be. Additionally,
the naive Bayes in the article is a multinomial model, not a multivariate model, so I can’t
depend exactly upon the data. For the last test case with my multinomial (see Table 2),
the percentage is much higher, suggesting that my program works correctly for multinomial,
and thus overall [10].

4.3 Sample data

I also tested the program by fabricating sample data sets based on a programmed-in proba-
bility for each word. With this perfect data, I was able to check my PFX vector and found
that it figured out the same probability as was programmed in. Thus, the probability calcu-
lation is correct. I was also able to check whether the testing part classified the perfect data
correctly, which it did.

5 Results and end material

5.1 Initial results

At first, I compared texts from different genres of the 20Newsgroups corpus. With this
program, the frequencies of words in different sorts of texts can be compared. The differences
in words in different genres of news is the basic premise behind the naive Bayes classifier,
and a visual representation with PyLab of the top 20 frequent words is in Figures 2 and 3.
The two news stories which were used were about space science and baseball respectively,
and they were approximately the same length. One difference which is striking is that the
baseball text has quite a few words which are the most frequent which deal with baseball,
while the only word in the top 20 with respect to frequency which is even remotely science-
related in the space article is ”black”. This difference suggests that the scientific writing is
more verbose and less to the point than the baseball writing. This perhaps would not be
the case with different articles in the same genre, but the correlation is interesting.

5.2 Stemming

With the simple naive Bayes classifier, I tested the effect on the correct percentage of classi-
fication of stemming the words with a Porter stemmer. I expected that it would improve the
classification, for it would allow words which are very similar to each other to be counted
together. However, I found that it did not help classification to stem–it was actually less
effective whenever the stemmer was used, especially for the 4th test case (Table 1). This
makes sense, though, because when you stem the words, you are losing information about

7



20 most frequent words
in a text from

sci.space 

Figure 2: The frequency of the top twenty most frequent words in the sci.space genre from
the 20Newsgroups database, plotted with PyLab.

8



20 most frequent words in 
a text from 

rec.sports.baseball

Figure 3: The frequency of the top twenty most frequent words in the rec.sports.baseball
genre from the 20Newsgroups database, plotted with PyLab.

9



the words. Perhaps some genres use the past tense more, or something else like that, and
so that information should not be lost. Thus, stemming the words did not improve the
performance of the naive Bayes classifier.

Percentage classified correctly, Multivariate with stemming
Classes compared In article [10] With stemming Without stemming

alt.atheism v. —
talk.religion.misc 79% 97.86% 98.63%

rec.sport.baseball v. —
rec.sport.hockey 96% 99.16% 99.25%

comp.sys.ibm.pc.hardware v. —
comp.sys.mac.hardware 96% 99.40% 99.66%

comp.graphics v. —
talk.politics.mideast 99% 95.21% 98.03%

5.3 Multivariate and Multinomial

I also tested the effect of using a multivariate or a multinomial event model (see above for
a description of each). I expected that the multinomial version would increase the clas-
sification percentage, since it accounts for the number of times a word occurs. However,
with the class pairs alt.atheism and talk.religion.misc; and comp.sys.ibm.pc.hardware and
comp.sys.mac.hardware, the multinomial event model was slightly less accurate than the
multivariate model. These results suggest that the methods themselves work better or worse
for different types of data, and it would be interesting to do more analysis on the test cases
to see what the differences are, and which types of texts are classified better by which of the
two methods. However, the multinomial results might be slightly less accurate than they
could be, because the lengths of the individual files are not taken into account. For example,
if a word occurs two times in a 25 word article, that is more significant than two occurrences
in a 250 word article. If the lengths of texts in a class differ greatly, then the classification
could be off for the multinomial.

Percentage classified correctly, Multivariate vs. Multinomial without stemming
Classes compared In article [10] Multivariate Multinomial

alt.atheism v. —
talk.religion.misc 79% 98.63% 97.90%

rec.sport.baseball v. —
rec.sport.hockey 96% 99.25% 99.42%

comp.sys.ibm.pc.hardware v. —
comp.sys.mac.hardware 96% 99.66% 99.49%

comp.graphics v. —
talk.politics.mideast 99% 98.03% 99.30%

10



5.4 Conclusions

From my second quarter multivariate model, I have created a multinomial model and com-
pared it to the previous multivariate model. I have found that accuracy wise, they are
approximately the same for the test cases that I have used. However, I also want to examine
the relationship of document length to classification, and perhaps account for the document
length for the multinomial model, and experiment with weighting the words based on how
many times they occur compared to a global vocabulary. Classification with a naive Bayes
classifier can be a great help for discriminate between two different types of news with the
same word. For example, the Mars Corporation could search for publicity in the news with-
out getting stories unimportant to them about the Mars rover with this tool. At this point
halfway through my project, my program would be able to discriminate between those two
types of text for the most part, and now I am trying optimizations to improve the accuracy.

6 Acknowledgements

I would like to thank my Computer Systems teacher, Mr. Latimer, for his help and support.

References

[1] Boyle, J.A., W.R. Greig, et al., “Construction of a model for computer-assisted diagno-
sis: application to the problem of non-toxic goitre,” Quarterly Journal of Medicine, 35,
565–588, 1966.

[2] Hand, D., and K. Yu, “Idiot’s Bayes: Not So Stupid after All?”, International Statistical
Review / Revue Internationale de Statistique, 69, 385–398, 2001.

[3] Korutchev, K. and E. Korutcheva, “Text as Statistical Mechanics Object,” CoRR, http:
//arxiv.org/abs/0810.3416, October 2008.

[4] Lewis, D., “Naive (Bayes) at Forty: The Independence Assumption in Information
Retrieval,” In Proceedings of the 10th European Conference on Machine Learning, 4–
15, Chemnitz, Germany, 1998.

[5] “Matplotlib: python plotting,” http://matplotlib.sourceforge.net/

[6] McCallum, A. and K. Nigam, “A comparison of even models for Naive Bayes text
classification,” In AAAI-98 Workshop on Learning for Text Categorization,” 1998.

[7] Nerbonne, J., “Linguistic variation and computation”, EACL ’03: Proceedings of the
tenth conference on European chapter of the Association for Computational Linguistics,
3–10, Budapest, Hungary, 2003.

[8] “NLTK Home (Natural Language Toolkit), http://www.nltk.org/

11



[9] Rennie, J., “Home Page for 20Newsgroups Data Set,” online available at http:

//people.csail.mit.edu/jrennie/20Newsgroups/

[10] Shen, Y., and J. Jiang, “Improving the Performance of Naive Bayes for Text Classifica-
tion,” CS224N, Spring 2003.

12


