
Naïve Bayes Classifiers
Christina Wallin, Period 3

Computer Systems Research Lab 2008-2009

Abstract
One part of computational linguistics is the

classification and comparison of texts into classes.
This comparison could be author classification, spam
filtering, or in the case of this project, the classification
of texts from different genres of news stories. The goal
of the project is to be able to classify a text as
belonging to one of two classes based on the actual
words in the text. This method of classification is called
a naive Bayes classifier. In this age of huge amounts of
data available online, a classifier which could
discriminate between two types of news could be
increasingly useful.

Background
The naive Bayes classification is a relatively simple

method for classifying texts based on the false
assumption that all of the variables, in this case words
in the documents, are independent of each other. Even
though this assumption is false, this project is done to
achieve fundamental understanding concerning the
effectiveness of the naive Bayes as compared to other
methods, and to find a way of improving upon the
performance of this classifier. However, it is also done
to try to provide a way for news stories from different
genres to be classified.

Methodology
The programming language used for these manipulations

is Python. The database which I will be using to classify
texts is the 20 Newsgroups database. There are 20 different
genres of news stories, and it is divided into training and
testing sets. The training and testing sets are separated in
time by a little, and so it is more realistic.

The first step in classifying a document is to read and
parse the file using the file.py program, removing all
punctuation and case and making a dictionary with the words
occurring and their frequencies. In this step, it is possible to
use a Porter stemmer to stem words to their roots—for
example, “running” and “runs” would both go to “run.”

Next, for each class/genre, train.py trains the program
as to what characteristics are most prevalent. It does this
with the words themselves, creating an array containing the
PFX, or probability that each word occurs in the class. As
the program goes through in turn all of the files in a class,
making a dictionary for each one, the PFX is calculated as
the number of texts in a class which contain at least one
instance of a word over the total number of texts in a class.

There are two different ways to calculate the PFX, with
multnomial and multivariate methods. The multinomial
method takes into account the frequency of the words in the
texts, whereas th multivariate methods depend upon the
number of files in which a particular word is in.

 Then with this probability vector for each class, I can
calculate the probability that a text is of a specific class in
test.py by generating the probability vector for that specific
text and comparing it to the PFX for each class. For this,
each variable (i.e. the occurrence or non-occurrence of each
word) has to be calculated in order to form the probability
that it is in a particular class. Then, the probabilities of each
word are multiplied in order to determine what the probability
that the file is in a specific class is.

The program has been tested by using small data sets
and checking manually whether or not the frequencies were
correct, and using my testing program. I also tested the
program by making sample data sets based on a
programmed-in probability for each word. With this perfect
data, I was able to check my PFX vector and found that it
figured out the same probability as was programmed in.
Thus, the probability calculation is correct. I was also able to
check whether the testing part classified the perfect data
correctly, which it did.

Results
A working naïve Bayes classifier with both a

multivariate and multinomial method of testing has
been created. Two different experiments have been
doing, to determine whether or not using the Porter
stemmer to stem words improves the percentage of
files classified correctly, and to see whether the
multivariate or the multinomial works better. I found
that it in fact it does not help to stem words, and was in
fact about a percentage point less effective. For
example, with the stemmer, 98.63% correctly classified
with vs 97.86%without in alt.atheism and
talk.misc.religion. The multinomial and multivariate
methods have approximately the same accuracy, with
the multivariate more accurate with two test cases and
the multinomial more accurate in two others, though
only by a small margin in all cases.

Program Methodology

	Slide 1

