Project Description

Student: Christina Wallin

Title: Naïve Bayes Classification

Background:

The naive Bayes classification is a relatively simple method for classifying texts based on the false assumption that all of the variables, in this case words in the documents, are independent of each other. Even though this assumption is false, this project is done to achieve fundamental understanding concerning the effectiveness of the naive Bayes as compared to other methods, and to find a way of improving upon the performance of this classifier. However, it is also done to try to provide a way for news stories from different genres to be classified.

There have been many studies which have used the naive Bayesian classification method, and it was first used in a published paper in 1966 for a medical study on computer-assisted diagnosis. Hand and Yu (2001) reviewed past uses of the naive Bayesian method for classification. Using theoretical and real data situations, they showed that the naive Bayes is not an excessively inaccurate method because of its false assumption that all of the variables, which in my project are occurrences of words, are independent. Shen and Jiang (2003) explain a way to improve the naive Bayes by combining it with logistic regression, another method of classification involving a more complicated mathematical model to determine the probability that each variable is in the class. The naive Bayes method itself is a bit overconfident in classification, and so by combining it with logistic regression, the classification is improved.

Description:

The first step in classifying a document is to read and parse the file using the file.py program, removing all punctuation and case and making a dictionary with the words occurring and their frequencies. In this step, it is possible to use a Porter stemmer to stem words to their roots—for example, “running” and “runs” would both go to “run.”

Next, for each class/genre, train.py trains the program as to what characteristics are most prevalent. It does this with the words themselves, creating an array containing the probability that each word occurs in the class for all the files.

There are two different ways to calculate the PFX, with multnomial and multivariate methods. The multinomial method takes into account the frequency of the words in the texts, whereas th multivariate methods depend upon the number of files in which a particular word is in. The stopwords “and,” “a,” “an,” and “the” can also be removed in this step.

 Then with this probability vector (PFX) for each class, I can calculate the probability that a text is of a specific class in test.py by generating the probability vector for that specific text and comparing it to the PFX for each class. The probabilities of each word occurring based on each class are multiplied in order to determine what the probability that the file is in a certain class is.

The program has been tested by using small data sets and checking manually whether or not the frequencies were correct, and using my testing program. I also tested the program by making sample data sets based on a programmed-in probability for each word. With this perfect data, I was able to check my PFX vector and found that it figured out the same probability as was programmed in. Thus, the probability calculation is correct. I was also able to check whether the testing part classified the perfect data correctly, which it did.

