
TJHSST Computer Systems Lab Senior
Research Project

Reverse Engineering Graphs: Obtaining Data
Points from Scatterplots

2008-2009

Maya Wei

January 23, 2009

Abstract

Various programs exist to take data points and use them to render
a graph. However, once the data are put into visual form, there is a
loss of numerical information if the original data cannot be obtained.
This project seeks to take data from a graph; in essence, the purpose
is to reverse engineer a given graph. This will provide for a set of data
points which can be used for various other numerical purposes, not
simply the graph form in which they are presented.

Keywords: image analysis, scatter plots, statistical graphs

1 Introduction - Elaboration on the problem

statement, purpose, and project scope

1.1 Scope of Study

A scatterplot is a visual representation of bivariate data. However, once the
data are in this visual form, there is minimal further testing one can do.
If only given a graph, there is no way to perform statistical tests on dots

1



laid along an image. By being able to reverse-engineer a graph to be able
to look at a graph and be able to calculate the what point the coordinate
represents the computers capabilities could simulate the human mind with
more efficiency.

In trying to read a graph, various image analysis techniques will be used:
edge analysis, and from that, shape recognition – or at the very least, shape
differentiation. The intention is to develop a method which will be capable
of successfully reading a point’s location to its axes regardless of point shape:
various graph-creating programs (OpenOffice Calculate, Microsoft Excel) use
different formatting with different colored backgrounds, different guidelines,
and different shapes of points.

The results expected are an accurate recreation of the points which were
utilized to create the graph. With these results, it would be possible to
represent the data in other graphs, make statistical calculations, etc.

2 Background and review of current litera-

ture and research

The field of image analysis and computer vision is highly advanced at this
point in time. There have been many papers written on shape identification,
image recognition, and graphic rendering. While there is no project similar
to what is being done here with graphs and data points, undoubtedly some-
body has sought to do it before. Image analysis is the focus of a generally
2D surface; it deals with issues such as connectivity.

Much progress has been made in the field of document image analysis; the
result is what we can see on programs such as Google Books. By first being
able to separate specific letters through pixel analysis – finding ”connected
pixels” in order to read letters and ultimately words. Using image analysis,
it is thereby possible to digitally recontruct a hard copy of a book; the copy
would be searchable, and would recognize images within the hard copy as
well. Reading off of the graph is similar in that it finds connected points and
attempts to identify them from there.

2



3 Procedures and Methodology

This project utilizes Java. In the program, there is utilization of an edge
recognition method, a method to determine connectivity, and a simple recog-
nition method, all of which shall be explicated below.

The input data is to be found in the form of a graph in a png file. The
image being used has been generated by OpenOffice Calc, displaying a graph
with points at (1, 1), (2, 2), (3, 3), (4, 4), and (5, 5). The graph is minimalist;
it has no background color, no guidelines, nothing that could possible throw
off the basic read. Various graph inputs – square points, triangle points,
circle points – will be tested to as to determine the accuracy of the program
at later dates.

3.1 Edge Detection

Currently, the program has a very primitive form of edge detection. It takes
the color of the point at (0, 0) and makes the assumption that the points
color is also the background color. It then looks at each individual point (x,
y) and the points neighbors (x+1, y), (x 1, y), (x, y + 1), (x, y 1), and also
searches the diagonal neighbors. If any of the points neighbors are the same
color as (0, 0), then that means that (x, y) is touching an edge.

Through doing this, we can obtain ”edges” to be highlighted. All these
edges are stored within an ArrayList, edgeList, which is used in future meth-
ods.

3.2 Connected Points and Recognition

Having found the edges, a method was written to group ”connected points”
together. Given a point (x, y), ”connected Points” are defined as the im-
mediate neighbors – (x+1, y), (x-1, y), (x, y+1), (x, y-1). Pixel points are
stored in int[]; the connected pixel points are stored with in ArrayList¡int[]¿.
Connected points uses an iterative method to search the list of edges for the
its neighbors, removing that point from ”available edges” once it’s found.

Given that the ”connected points” are now together, an effort is made to
differentiate the points themselves. Do the connected points form an axis, a

3



number along the scale, or a graph point? Currently, the axis is recognized as
the longest collection of ”connected points”; those connected points located
to the right of the x axis are points, whereas to the left of x and below the
y, the connected points are numbers. The axis is somewhat burdened by
having tickmarks, which are connected to the axis but don’t have a use in
identification.

With the graph points having been determined, it is simple enough to find
the middle of the point (because a point is connected to itself on all sides,
we can at least be ensured that the average will be in the center of such a
point). This middle point allows for determining where the graph point is in
relation to the axis.

3.3 Analysis

All analysis is done visually; the GUI will correctly display whatever is high-
lighted. It is the simplest way to determine whether or not the code is
working; if the incorrect items are highlighted, then it is cause for going back
and changing the code.

The GUI itself focuses on demonstrating what can be done with the
project. It can display the edges, the ”extended” image, and can also identify
the axes / numbers / graph points. Radio buttons allow for the viewing of
the aforementioned objects.

4 Expected Results

The desired result of this program is to find data points from a given graph.
The returned result will be an array returning the locations of the points.

While application of this field is slim, the various image analysis tech-
niques could be utilized. One could also expand upon the concept to be able
to read bar graphs, pie charts, line graphs, etc.

4



5 Bibliography

Faure and Vincent. Document Image Analysis For Active Reading. ACM
International Conference Proceeding Series; Vol. 259. p. 7 14. 2007.

Igathinathine, Pordesimo, Columbus, Batchelor, and Methuku. Shape
identification and particles size distribution from basic shape parameters
using ImageJ. Computer and Electronics and Agriculture, p. 168-182. Fall, 2008.

5


