
TJHSST Computer Systems Lab Senior Research
Project

Reverse Engineering Graphs: Obtaining Data Points
from Scatterplots

2008-2009

Maya Wei

April 1, 2009

Abstract

Various programs exist to take data points
and use them to render a graph. However,
once the data are put into visual form,
there is a loss of numerical information if
the original data cannot be obtained. This
project seeks to take data from a graph; in
essence, the purpose is to reverse engineer a
given graph. This will provide for a set of
data points which can be used for various
other numerical purposes, not simply the
graph form in which they are presented.

Keywords: image analysis, scatter plots,
statistical graphs

1 Introduction

1.1 Scope of Study

A scatterplot is a visual representation of
bivariate data. However, once the data are
in this visual form, there is minimal further
testing one can do. If only given a graph,
there is no way to perform statistical tests
on dots laid along an image. By being able
to reverse-engineer a graph to be able to
look at a graph and be able to calculate the
what point the coordinate represents the
computers capabilities could simulate the
human mind with more efficiency.

In trying to read a graph, various image
analysis techniques will be used: edge anal-
ysis, and from that, shape recognition – or
at the very least, shape differentiation. The
intention is to develop a method which will

1



be capable of successfully reading a point’s
location to its axes regardless of point shape:
various graph-creating programs (OpenOffice
Calculate, Microsoft Excel) use different for-
matting with different colored backgrounds,
different guidelines, and different shapes of
points.

The results expected are an accurate recre-
ation of the points which were utilized to cre-
ate the graph. With these results, it would be
possible to represent the data in other graphs,
make statistical calculations, etc.

2 Background and review

of current literature

and research

The field of image analysis and computer
vision is highly advanced at this point in
time. There have been many papers written
on shape identification, image recognition,
and graphic rendering. While there is no
project similar to what is being done here
with graphs and data points, undoubtedly
somebody has sought to do it before. Image
analysis is the focus of a generally 2D surface;
it deals with issues such as connectivity.

Much progress has been made in the field
of document image analysis; the result is
what we can see on programs such as Google
Books. By first being able to separate spe-
cific letters through pixel analysis – finding
”connected pixels” in order to read letters
and ultimately words. Using image analysis,

it is thereby possible to digitally recontruct
a hard copy of a book; the copy would
be searchable, and would recognize images
within the hard copy as well. Reading off of
the graph is similar in that it finds connected
points and attempts to identify them from
there.

3 Procedures and

Methodology

This project utilizes Java. In the program,
there is utilization of an edge recognition
method, a method to determine connectivity,
and a simple recognition method, all of
which shall be explicated below.

The input data is to be found in the form
of a graph in a png file. The image being
used has been generated by OpenOffice Calc,
displaying a graph with points at (1, 1), (2,
2), (3, 3), (4, 4), and (5, 5). The graph is
minimalist; it has no background color, no
guidelines, nothing that could possible throw
off the basic read. Various graph inputs –
square points, triangle points, circle points –
will be tested to as to determine the accuracy
of the program at later dates.

3.1 Edge Detection

Currently, the program has a very primitive
form of edge detection. It takes the color of
the point at (0, 0) and makes the assumption
that the points color is also the background
color. It then looks at each individual point

2



Figure 1: Standard graph used throughout.
The 3rd Quarter GUI is also displayed, in-
corporating the number analysis columns on
the right.

(x, y) and the points neighbors (x+1, y), (x
1, y), (x, y + 1), (x, y 1), and also searches
the diagonal neighbors. If any of the points
neighbors are the same color as (0, 0), then
that means that (x, y) is touching an edge.
Thus, if the edge check does not return that
anything is touching an edge, the point is
unimportant; otherwise, the point is stored
accordingly.

Through doing this, we can obtain ”edges”
to be highlighted. All these edges are stored
within an ArrayList, edgeList, which is used
in future methods.

3.2 Connected Points and
Recognition

Having found the edges, a method was writ-
ten to group ”connected points” together.
Given a point (x, y), ”connected points”

are defined as the immediate neighbors –
(x+1, y), (x-1, y), (x, y+1), (x, y-1). Pixel
points are stored in int[]; the connected pixel
points are stored with in ArrayList¡int[]¿.
Connected points uses an iterative method to
search the list of edges for the its neighbors,
removing that point from ”available edges”
once it’s found.

Given that the ”connected points” are now
together, an effort is made to differentiate
the points themselves. Do the connected
points form an axis, a number along the
scale, or a graph point? Currently, the
axis is recognized as the longest collection
of ”connected points”; those connected
points located to the right of the x axis are
points, whereas to the left of x and below
the y, the connected points are numbers.
The axis is somewhat burdened by having
tickmarks, which are connected to the axis
but don’t have a use in identification. The
program has been written to ignore these
axis tickmarks using the longest straight line.

With the graph points having been deter-
mined, it is simple enough to find the middle
of the point (because a point is connected to
itself on all sides, we can at least be ensured
that the average will be in the center of such
a point). This middle point allows for deter-
mining where the graph point is in relation to
the axis. On the GUI, there is an ”extend”
button so as to display this relation.

3



Figure 2: Extend; green lines extend from the
centers of points.

3.3 Image Identification

The second portion of the program was
made in intent to analyze the specific num-
ber values on the scale of the axes. Seeing as
the computer cannot immediately by itself
recognize a system of pixels to represent a
quantitative figure, it is necessary to make a
form of image analysis in itself.

The system works as follows: given the
scale, the program will find what the numer-
ical value of the code or at least, what the
program projects it to be based off a certain
base system. In order to compensate for er-
ror, the numerical differences between each
tick mark on the scale will be calculate. The
ultimate goal is to merely find the scale (pix-
els per one unit), not necessarily to correctly
identify all the numbers along the scale.

4 Analysis

All analysis is done visually; the GUI will
correctly display whatever is highlighted. It
is the simplest way to determine whether
or not the code is working; if the incorrect
items are highlighted, then it is cause for
going back and changing the code.

The GUI itself focuses on demonstrating
what can be done with the project. It can
display the edges, the ”extended” image, and
can also identify the axes / numbers / graph
points. Radio buttons allow for the viewing
of the aforementioned objects.

When another graph, created by Microsoft
Excel, was used as a new input, the results
yielded for the current code proved to be
fairly consistent with what was desired; the
identify and extend methods worked effec-
tively. However, there was a slight error
in the orders in which the numbers along
the scale were read. Because the method
places the subimages of numbers into the
array according x-coordinates and then y-
coordinates, it is generally assumed that the
generated graphs all have the same minimum
x-value.

The methods for which to compare num-
bers are fairly primitive in nature; they are
one-to-one pixel comparisons. Currently, the
method is unable to shift itself; this way, if
there were a horizontal line at, say, y = 4,
but the original image has a horizontal line
at y = 3, there is zero match. This will be
change in future versions of the project.

4



5 Expected Results

The desired result of this program is to
find data points from a given graph. The
returned result will be an array returning
the locations of the points.

While application of this field is slim, the
various image analysis techniques could be
utilized. One could also expand upon the
concept to be able to read bar graphs, pie
charts, line graphs, etc.

6 Bibliography

Faure and Vincent. Document Image Analysis For Active Reading. ACM
International Conference Proceeding Series; Vol. 259. p. 7 14. 2007.

Igathinathine, Pordesimo, Columbus, Batchelor, and Methuku. Shape
identification and particles size distribution from basic shape parameters
using ImageJ. Computer and Electronics and Agriculture, p. 168-182. Fall, 2008.

5


