
TJHSST Computer Systems Lab Senior Research
Project

Reverse Engineering Graphs: Obtaining Data Points
from Scatterplots

2008-2009

Maya Wei

June 10, 2009

Abstract

Various programs exist to take data points
and use them to render a graph. However,
once the data are put into visual form,
there is a loss of numerical information if
the original data cannot be obtained. This
project seeks to take data from a graph; in
essence, the purpose is to reverse engineer a
given graph. This will provide for a set of
data points which can be used for various
other numerical purposes, not simply the
graph form in which they are presented. The
purpose of this project was to investigate
basic forms of image analysis while being
able to display the results in a streamlined
fashion. This program was chiefly an ex-
ploration into the ideas of visual analysis
without the use of any specific theories.

Keywords: image analysis, graphs

1 Introduction

1.1 Scope of Study

A scatterplot is a visual representation of
bivariate data. It is used so that the human
eye may more easily identify trends in data.
However, once the data are in this visual
form, there is a loss of direct numerical
information. If provided only a graph,
there is no way to perform statistical tests
upon dots laid along an arbitrary set of
perpendicular bars. By reverse-engineering
a graph, the user is able to derive the base
information stored within that graph. A
computer cannot as easily see and iden-
tify axes, points, and numbers as we do,
but also has the capability to derive points
faster and with more precision than a human.

In trying to read a graph, various image

1



analysis techniques will be used: edge anal-
ysis and number identification are the two
most prominent factors. The intention of this
project is to develop methods which will be
capable of successfully reading a point’s lo-
cation to its axes. The program has not ac-
commodated the various graph-creating pro-
grams’ (OpenOffice Calculate, Microsoft Ex-
cel) use of different formatting with differ-
ent colored backgrounds, different guidelines,
and different shapes of points; rather, we are
assuming that the graphs read are minimalist
in design and are not ”chart ink” squander-
ers.

2 Background Informa-

tion

Image analysis is the focus of a generally
2-D surface, dealing with issues such as
connectivity and perceived depth. The
field of image analysis and computer vision
is highly advanced at this point in time.
There have been many papers written on
shape identification, image recognition, and
graphic rendering; there are various methods
developed for edge-detection. While there is
no project similar to what is being done here
with graphs and data points, undoubtedly
somebody has sought to do it before; with
effort, no doubt it was a success. Initial
research showed that a patent had been
developed for an item that would manually
scan a handwritten graph and convert it to
data from there.

Much progress has been made in the field
of document image analysis; the result is
what we can see on programs such as Google
Books. By first being able to separate
specific letters through pixel analysis –
finding ”connected pixels” in order to read
letters and ultimately words. Using image
analysis, it is thereby possible to digitally
recontruct a hard copy of a book; the copy
would be searchable, and would recognize
images within the hard copy as well. My
scanner attempts to do this with pdf files; the
technology is fairly universal now and applies
to items of interest such as handwriting. Dr.
Andries van Dam of Brown University, whose
focus is on user interfaces, is in the process of
developing a math program that can convert
handwritten numbers, functions, and other
equations drawn on a tablet to numerical
equations in Mathematica. The identifica-
tion process is complex, using the previous
letters to try and identify the latter; however,
part of his project is rooted in image analysis.

Edge detection techniques are varied.
Many of them use brightness as a measure
of contrast; if there is a point considerably
brighter than another, one can assume that
the brighter is an ”edge.” John F. Canny, in
1986, developed a method of edge detection
used to this day; his algorithm involved noise
reduction, gradients, relative intensity, and
setting certain thresholds such that high
differences in intensity are first identified,
and then lower differences are identified that
could be softer parts of the edges.

The field of image analysis is expansive; the

2



intent of the project is to scrape at the sur-
face of image analysis and see what methods
I could develop on my own.

3 Procedures and

Methodology

This project utilizes Java. The program can
be divided into three separate parts: edge
detection, subgrouping, and image recog-
nition. A fourth part, scale compilation,
was not reached in the project, but will be
discussed in its theoretical basis.

The input data is to be found in the form
of a graph in a png file. The image being
used has been generated by OpenOffice Calc,
displaying a graph with points at (1, 1), (2,
2), (3, 3), (4, 4), and (5, 5). The graph is
minimalist; it has no background color, no
guidelines. These attributes detract from the
graph as a whole, putting in needless infor-
mation; it is also easier for the program to
deal with the smallest amount of extraneous
data possible. See Figure 1 for the graph.

3.1 Edge Detection

The edge detection in this program is ba-
sic, given that there is no multi-colored back-
ground - rather, everything is white. The pro-
gram takes the color of the point at (0, 0) and
makes the assumption that this point’s color
is the same as the background color. That is,
if (0, 0) is white, the background for the rest
of the graph should also be white.

The program then looks at each individual
point (x, y) and searches its adjacent neigh-
bors (left, right, up, down, and diagonals).
If any of the points’ neighbors are the same
color as (0, 0), then it can be implied to
mean that (x, y) is an edge. If the point is
found to be an edge, then it is stored in an
ArrayList edgeList. The int[] is a two-value
array of [x coordinate, y coordinate] for all
necessary points. See figure 2 for a visual
illustration.

3.2 Subgrouping

Once the edged-points are all placed within
edgeList, there is a task to split this Ar-
rayList into something more applicable.
These edge points belong to three separate
categories: some points belong to a number
on the scale; some edge points belong to
the axis; some edge points belong to the
graph-points. The edged-points must be
divided accordingly, as their functionality
in future methods depends on their being
properly sorted. However, they must be
sorted by how they are connected first.

Each point is placed into another, smaller,
ArrayList. These ArrayLists hold only
points that are connected to each other by
immediate neighbors – (x+1, y), (x-1, y),
(x, y+1), (x, y-1). Iterating through the
entire edgeList, each point is placed with
its neighbors in an arduous search. If there
are no adjacent pixels that are edges that
have already been placed in an ArrayList, a
new ArrayList is added. Initially, an iterator

3



Figure 1: Figure 1. The standard graph used through the project; created in OpenOffice
Calc.

Figure 2: Figure 2. The points in dark grey are considered the edges; they touch the outside
(the white). The inner points do not touch the outside white, even if they are a different
color, and thus are not considered an edge.

4



was used; however, iterators do not allow for
the modification of the ArrayList while the
iterator traverses through. Thus, finding all
connected points uses an iterative method
(do-while loop) to search through edgeList
for each point’s neighbors, removing that
point from edgeList once it’s found.

Once again, it is necessary to sort the
grouped-arrayLists into one of three cate-
gories: Points, Numbers, or Axis. The axis,
in this situation, is recognized as the longest
collection of the grouped-arrayLists, as
grouped-points and grouped-numbers don’t
have that much of a collective perimeter.
Using this assumption of the axis, the
grouped-points located to the right of the x
axis are Points (on the graph), whereas the
connected points to the left of x and below
the y are numbers.

As seen in Figure 1, the axes have tick
marks. These tick marks do not detract
from the graph, nor to the gathering of
information, but it was also possible to filter
out the tick-marks when highlighting the
axis by using the longest straight lines; the
x and y axis were also defined by using the
longest lines within the axis point.

When the Points are determined, it is pos-
sible to identify the centers of such points.
All it requires is the uppermost, bottommost,
leftmost, and rightmost coordinates in each
Point ArrayList; then the average can be
taken. From there, it is possible to extend
lines in order to show the relationship of the
Points to the Axis, as shown in Figure 3.

Figure 3: Figure 3. Extended Lines.

3.3 Image Recognition

The second portion of the program was made
in intent to analyze the specific number val-
ues on the scale of the axes. Seeing as the
computer cannot immediately recognize a
system of pixels to represent a quantitative
figure, it is necessary to make a program
that could simulate such.

Each Number is parsed from the image;
its subimage is taken out and subsequently
modified. Each subimage, when parsed, is
expanded to a 50x50 image. Every image is
closely parsed, going only as far out as the
furthest pixel goes. Then, in order to increase
the number of pixels (and because when im-
ages expand, there is a blur about them), the
image is changed entirely to black-and-white.
If there is a pixel that is not exactly white, it
becomes black. This can be seen in Figure 4.

After the image modification is done, the

5



Figure 4: Figure 4. Number modification.

Number is compared to base images depicting
numbers from 0-9, which had been edited in
a similar process. The matching pixel count
(if it’s black on the number, is it black on the
base image?) is counted. However, this yields
an issue; because there are so many pixels and
the overlap is so great, the accuracy rate is in
wanting. For example, in Figure 5,

Figure 5: Figure 5. Number Comparison.
The Number is on the left; the base images
are on the right.

the Number is a 6. However, the compared
6 and the compared 8 are not that much dif-
ferent. It also should be noted that the font
is different, so that the expansion of the base
numbers yielded curved edges, whereas the

Number 6’s expansion did not. These little
differences threw off the general comparison.

3.4 Scale Compilation

While this was never coded, scale compila-
tion would have been the last step in this
project. It would involve taking the Numbers
and what the computer represented their
quantitative value to be, and then using
deductive reasoning to figure out the scale.

To determine the scale, all that is needed
are two Numbers along the same axis cor-
rectly identified. For example, if one Number
was 3 and another was 1, and there was a
twenty pixel difference between the two, I
could infer that the scale is one unit per
every ten pixels.

This logic can also be used to check the
inaccuracies of the image analysis of the
previous section. Many differences between
many different Numbers can be taken, and
the rate found; the mode unit / pixel scale
would be the scale itself.

The problems with this, however, are how
to determine where exactly the Number lies
in accordance with the axis. It is possible
to use the center of the number; it is also
possible to use tickmarks, if they are there.
However, this is a rather arduous task.

6



4 Analysis

All analysis is done visually; the GUI will
correctly display whatever is highlighted. It
is the simplest way to determine whether
or not the code is working; if the incorrect
items are highlighted, then it is cause for
going back and changing the code.

The GUI itself focuses on demonstrating
what can be done with the project. It can
display the edges, the ”extended” image, and
can also identify the axes / numbers / graph
points. Radio buttons allow for the viewing
of the aforementioned objects.

When another graph, created by Microsoft
Excel, was used as a new input, the results
yielded for the current code proved to be
fairly consistent with what was desired;
the identify and extend methods worked
effectively. However, there was a slight
error in the orders in which the numbers
along the scale were read. Because the
method places the subimages of numbers
into the array according x-coordinates and
then y-coordinates, it is generally assumed
that the generated graphs all have the same
minimum x-value.

5 Strengths and Weak-

nesses

While the program works in the basic princi-
ples, more efficient methods of recognition are
in wanting in case graphs could become more

advanced. Many assumptiosn are being made
in order for this program to work; while the
assumptions whill most likely hold true for
all graphs (that axes are the longest chain of
connected points, that edge analysis will be
so simple against a white background), it is
not safe to assume that it’s applicable for all
situations. However, the program is very ef-
fective at its purpose – showing a step by step
method of how to analyze a graph, showing
the viewer first the edges, then splitting them
into recognizable categories, then analyzing
the numbers and comparing.

6 Future Study

Areas for future study include expanding the
edge detection algorithms and for improving
the image analysis. Also incorporating part
four of the development, the scale compila-
tion. Much of this project can afford to be
fully fleshed out, and different classes be de-
veloped. There is much in the field of image
analysis that can be tried.

7 Credits

Many thanks given to Mr. Latimer, who kept
us on track even when we wandered so far
from it that we lost sight of passing trains.

References

[1] Alagoz, “Obtaining Depth Maps From
Color Images by Region Based Stereo

7



Matching Algorithms”, OncuBilim Al-
gorithm And Systems Labs, Vol. 08, ar-
ticle 4, 2008.

[2] Faure and Vincent, ”Document Image
Analysis for Active Reading”,
ACM International Conference Proceed-
ing Series, Vol. 259., pp. 7 - 14. 2007.

[3] J. Fang, S. Fang, Huang, and Tuceryan,
”Digital geometry image analysis for
medical diagnosis”, Proceedings of the
2006 ACM symposium on Applied com-
puting, pp. 217 - 221, 2006.

[4] Hartley, Catalyurek, Ruiz, Igual, Mayo,
and Ujaldon, ”Biomedical image analy-
sis on a cooperative cluster of GPUs and
multicores”, Proceedings of the 22nd an-
nual international conference on Super-
computing, pp. 15 - 25, 2008.

[5] Igathinathine, Pordesimo, Columbus,
Batchelor, and Methuku, “Shape iden-
tification and particles size distribution
from basic shape parameters using Im-
ageJ”, Computer and Electronics and
Agriculture, pp. 168-182, Fall, 2008.

[6] Tasdemir, Yakar, Urkmez, and Inal,
”Determination of body measurements
of a cow by image analysis”, Proceedings
of the 9th International Conference on
Computer Systems and Technologies and
Workshop for PhD Students in Comput-
ing, Article 70, 2008.

8


