Project Proposal
Mark Cheung, TJHSST 2010

Mentor: Michael Ihde

Northrop Grumman Information Systems
I. Title of the Project: Gathering Software Metrics from Software Version Control Systems and Automated Build Systems
II. Purpose: The purpose of this project is to develop tools that support the automated production of software metrics from version control systems (such as CVS and Subversion) and build systems (such as CruiseControl). Time permitting, the project will include the development of tools that assist in generating reports and performing analysis of the results.

III. Scope: Much of the metrics is already in place in Northrop Grumman SVN/CruiseControl servers. Their servers use the codecount tools from University of Southern California’s CodeCount Source Lines of Code Counting Program. The project will take the code a few steps further and develop the metrics to accommodate for automated generated Eclipse EMF code and other factors.
IV. Background:
Software metrics are tools that can be used to measure in quantity the software development and its specification. It is often use to estimate the cost and resource requirements (such as time), the productivity, the data collection, the code quality, and the performance. The metrics are either direct or indirect. The direct metric depends only on the attribute it is measuring while an indirect metric makes inferences based on a measure of other attribute(s).
Direct Measure: Physical SLOC (Source Lines of Codes), execution speed, memory size, defects reported (bugs)
Indirect Measure: Logical SLOC: functionality, quality, complexity, efficiency, reliability and maintainability.

V. Similar Projects: StatSVN/StatCVS, USC CodeCount, Sonar, Eclipse Metrics 1.3.6, Checkstyle, SCLC, SLOCCount, Google Hackystat

More Backgrounds will be added.
VI. Project Components:
Software:
Eclipse: Eclipse is a multi-language IDE with various components (plugins) that allow for development of Java, C/C++, Python, Perl, web applications etc. It is soft coded; the plug-ins it employed provide all of its functionality including the runtime system. Eclipse open source has more than 60 different projects, which are organized into seven categories: enterprise development, embedded and device development, Rich Client Platform, Rich Internet Applications, Application Frameworks, Application Lifecycle Management (ALM), and Service Oriented Architecture (SOA). I am using Eclipse C/C++ Development Tooling (CDT), RCP/Plug-in Development Environment (PDE), and Rich Ajax Platform (RAP).

Eclipse Rich Client Platform (Eclipse RCP): Eclipse RCP is an open source Java-based development platform composed of a minimal set of plug-ins for building a platform application. It is portable in that the components are Java based and widgets have native implementations. By using RCP, developers can make use of the existing codebase for speed purpose. It also allows developers to write in C++ the GUI development in Java. Each of the bundled features can easily be implemented Equinox OSGi standard bunding.

Eclipse Rich Ajax Platform (Eclipse RAP): Eclipse RAP is very similar to Eclipse RCP. However, instead of Standard Widget Toolkit, it implements SWT API with RWT. This allows rendering of widgets on a web-enable application from a single code base and reuse of code and development tools.
Eclipse RCP and RAP Comparison:

VII. Procedure and Methodology:
1) Evaluate the Northrop Grumman Ultimate Code Line Accumulator Tool (based on USC CodeCount)
2) Extend CodeCount language support as necessary with C: (i.e. X-MIDAS and NextMIDAS scripting languages, Java, Python)

3) Enhance CodeCount as necessary to support counting of auto-generated source code

4) Select/Develop tool to perform automatic production of metrics and store them in a database (Hackystat)

5) Develop single-source plugins for Eclipse RAP and Eclipse RCP with Java to support report generation and analysis of metrics database.

6) Time permitting: extend metrics collection to include code-quality, code-reuse, code-churn data, build failures, etc.
VII. Expected Results and Applications: The project will modify sets of existing software metrics for python, X-Midas, and Java to account for Logical and Physical SLOC, Eclipse EMF generated code. The output will be a BIRT/Eclipse RAP integration plugin. The resulting metrics scripts will be applicable for code analysis. Developers may use it to understand what methods should be reworked and retested.
VIII. Testing and Analysis: Testing is conducted on various scripts in Java, X-Midas, and Python. Measurements are taken by hand and comparison with the metrics results are made for testing. The plug-in’s architecture will eventually be extensible so future modifications can be made to the program.
Resources:
NG Internal
 Hobgoblin Metrics Collection Server: http://137.51.14.88/
Internet:
http://sonar.codehaus.org/

http://csse.usc.edu/research/CODECOUNT/
http://metrics.sourceforge.net

http://code.google.com/p/hackystat/
http://www.eclipse.org/rap/demos.php
http://wiki.eclipse.org/RAP/BIRT_Integration
Result:
Evaluation Summary: USC CodeCount (Northrop Grumman Ultimate Code Line Accumulator Tool) is a C language toolset that produces software metrics with two possible Source Lines of Code (SLOC)—physical and logical SLOC. Physical SLOCs is the sum of the program’s source code including the commented lines while logical SLOC is the total number of statements are statements that should be counted for less than its number of lines (e.g. “if” and “endif” are redundancy and should be counted as just one logical SLOC). The USC CodeCount supports several programming languages—C/C++, C#, Java, JavaScript, MUL, Pearl, SQL, and XML. It generates a report in .dat format that includes the total lines, total blank lines, total embedded comments, total compiler directives lines, total data declaration lines, total execution instructions lines of each file. It also reports the Physical and Logical SLOC and their ratio.
Summaries of Methods:

extern void comment_processing(bool_type *comment_flag, int line_length,

char line[], int *comment_lines, int *e_comm_lines)
/*---*/
/* Procedure will scan each line for the comment delimiter ‘!’. When code */
/* appears prior to comment delimiter, it indicates the comment is an */
/* embedded comment. Set 'comment_flag' to true for whole line comments. */
/*---*/
extern void control_statements_processing(bool_type *control_flag,

int line_length, char line[], int *control_statements,

target_tally_array_type local_control_tally,

target_name_array_type control_names, int control_length,
bool_type close_match, bool_type *found, int *line_loc, char exclude[], target_tally_array_type control_tally)
/*---*/
/* Procedure will scan each line for the control statements, which are */
/* defined in the CONTROL_STATEMENTS_LIST.Declare SLOC to be a control */
/* statement and set control_flag accordingly. */
/*---*/
extern void commands_processing(char line[], int line_length, int *comm_lines)
/*---*/
/* Procedure will scan each line for the commands, which are defined in */
/* the CONTROL_STATEMENTS_LIST. Declare SLOC to be a control statement */
/* and set control_flag accordingly. */
/*---*/
extern void compiler_directives_processing(bool_type *directive_flag,

int line_length, char line[], int *directive_lines,

target_tally_array_type local_dirr_tally,

target_name_array_type dirr_names, int dirr_length,

bool_type close_match, bool_type *found, int *line_loc, char exclude[],

target_tally_array_type dirr_tally)
/*---*/
/* Procedure will scan each line for the compiler directives, which are */
/* defined in the DIRR_NAME_LIST. Declare SLOC to be a directive line */
/* and set directive_flag accordingly. */
/*---*/

Unfinished
References:

USC-CSE. (2005). Code count tools. Retrieved from http://sunset.usc.edu/research/CODECOUNT/
