Realtime Computational Fluid Dynamics Simulations Using the Lattice Boltzmann Method

Thomas Georgiou

Thomas Jefferson High School for Science and Technology Computer Systems Lab

October 27, 2009

Thomas Georgiou (TJHSST)

CFD Simulations

October 27, 2009 1 / 9

Uses for Fluid Dynamics

- Computer Graphics
- Aerodynamics and Engineering
- Meteorology
- Oceanography
- Plasma Physics
- and more

3

The Boltzmann Equation

$$f(x + vt, v, t) = f(x, v, t) + \Omega(x, v, t)$$

Conists of:

Thomas Georgiou (TJHSST)

CFD Simulations

October 27, 2009 3 / 9

э

・ロト ・聞 ト ・ ヨト ・ ヨト

The Boltzmann Equation

$$f(x + vt, v, t) = f(x, v, t) + \Omega(x, v, t)$$

Conists of:

• Streaming

The Boltzmann Equation

$$f(x + vt, v, t) = f(x, v, t) + \Omega(x, v, t)$$

Conists of:

- Streaming
- Collisions

The BGK Collision Operator

$$\Omega_{BGK} = \frac{f - f_{eq}}{\tau}$$

Collisions tend to push the system towards local equilibrium.

 f_{eq} is the equilibrium distribution function

Thomas Georgiou (TJHSST)

▲ @ ▶ ▲ ∃ ▶ ▲

In order to solve the Boltzmann equation numerically, the domain must be split up into discrete components. This includes space, velocity, and time.

Naming Scheme

DnQm

- *n* is the number of space dimensions
- *m* is the number of velocities

Lattice and Velocity Configurations

3

Implementation Details

COpenGL

CFD Simulations

3

• 300x300 2D simulation runs in realtime on a single 2 Ghz Intel Core 2 Duo core.

3

イロト イヨト イヨト イヨト

- 300x300 2D simulation runs in realtime on a single 2 Ghz Intel Core 2 Duo core.
- Simulation looks physically correct

- 300x300 2D simulation runs in realtime on a single 2 Ghz Intel Core 2 Duo core.
- Simulation looks physically correct
- Mass is not conserved

Current Results

Thomas Georgiou (TJHSST)

CFD Simulations

October 27, 2009 9 / 9

イロト イ団ト イヨト イヨト 三日