Brian Hamrick

Code Description

File: matrix.hh

class matrix {

 private:

 int *a, n, m, zero; // n rows, m columns

 public:

 matrix();

 matrix(int,int);

 ~matrix();

 int rows();

 int cols();

 void setRows(int);

 void setCols(int);

 void setDims(int,int);

 int& get(int,int);

 matrix& operator=(matrix&);

};

This matrix class allows for basic row and column operations on matrices of integers (mod 2^32). This is the base type used for Smith normal form computations.

class mpz_matrix {

 private:

 mpz_t *a, zero;

 int n, m;

 public:

 mpz_matrix();

 mpz_matrix(int,int);

 ~mpz_matrix();

 int rows();

 int cols();

 void setRows(int);

 void setCols(int);

 void setDims(int,int);

 mpz_t& get(int,int);

 mpz_matrix& operator=(mpz_matrix&);

 void write(FILE*);

};

This matrix class allows for basic row and column operations on matrices of arbitrary precision integers. This is the base type used for Smith normal form computations of matrices that are not known to reduce nicely.

void smithNormalForm(matrix&, matrix&, matrix&);

void smithNormalForm(mpz_matrix&,mpz_matrix&,mpz_matrix&);

These functions compute the Smith normal form of a matrix. The first argument is the matrix to reduce, and the second and third arguments are return values that are currently unused. They are for returning the matrices by which the matrix was multiplied on the left and right to reduce it to Smith normal form. As of now, I am not using these results and so the functions do not compute and return them.

File: simplex.hh

class point {

 public:

 double x, y, z;

};

class simplex {

 public:

 int dim;

 std::vector<int> verts;

 bool operator==(const simplex other) {

 return dim == other.dim && verts == other.verts;

 }

};

class scomplex {

 public:

 int dim;

 std::vector<point*> points;

 std::vector<simplex*> simplices;

};

These classes are used for representing a simplicial complex in three dimensional space. This code needs to be updated to allow for higher dimensions (the point class is currently not scalable).

File: surfacehom.cc

This file (source code not included for brevity) computes the homology type of a three dimensional manifold embedded in R3 given its bounding surfaces. For example, given a torus the program will output that the Betti numbers are 1 and 0, while given a tetrahedron the Betti numbers are 0 and 0. This verifies that a torus is not essentially equivalent to a tetrahedron.

