# -*- coding: iso-8859-1 -*-

#This program displays the results of the pre-processed string in comparison to the original. 

#The methods are whitening, which inserts a '00' every two characters, and interleaving, which 

#doubles the length of the string by repeating each letter

#The SHA-1 Algorithm:

#1 -  Appending Padding Bits. The original message is "padded" (extended) so that its length (in bits) is congruent to 448, modulo 512. The padding rules are:

    #* The original message is always padded with one bit "1" first.

    #* Then zero or more bits "0" are padded to bring the length of the message up to 64 bits fewer than a multiple of 512.

#2 - Appending Length. 64 bits are appended to the end of the padded message to indicate the length of the original message in bytes. The rules of appending length are:

    #* The length of the original message in bytes is converted to its binary format of 64 bits. If overflow happens, only the low-order 64 bits are used.

    #* Break the 64-bit length into 2 words (32 bits each).

    #* The low-order word is appended first and followed by the high-order word.

#3 -Preparing Processing Functions. SHA1 requires 80 processing functions defined as:

   #f(t;B,C,D) = (B AND C) OR ((NOT B) AND D)         ( 0 <= t <= 19) 

   #f(t;B,C,D) = B XOR C XOR D                        (20 <= t <= 39) 

   #f(t;B,C,D) = (B AND C) OR (B AND D) OR (C AND D)  (40 <= t <= 59) 

   #f(t;B,C,D) = B XOR C XOR D                        (60 <= t <= 79) 

#4 -  Processing constraints: SHA1 requires 80 processing constant words:

   #K(t) = 0x5A827999         ( 0 <= t <= 19) 

   #K(t) = 0x6ED9EBA1         (20 <= t <= 39) 

   #K(t) = 0x8F1BBCDC         (40 <= t <= 59) 

   #K(t) = 0xCA62C1D6         (60 <= t <= 79) 

#5 - Initializing Buffers. SHA1 algorithm requires 5 word buffers with the following initial values:

   #H0 = 0x67452301

   #H1 = 0xEFCDAB89

   #H2 = 0x98BADCFE

   #H3 = 0x10325476

   #H4 = 0xC3D2E1F0

#6 - Processing Message in 512-bit Blocks. :

#Input and predefined functions: 

   #M[1, 2, ..., N]: Blocks of the padded and appended message

   #f(0;B,C,D), f(1,B,C,D), ..., f(79,B,C,D):

   #K(0), K(1), ..., K(79): Defined as above

   #H0, H1, H2, H3, H4, H5: Word buffers with initial values

#Algorithm:

   #For loop on k = 1 to N

     #(W(0),W(1),...,W(15)) = M[k] /* Divide M[k] into 16 words */

     #For t = 16 to 79 do:

         #W(t) = (W(t-3) XOR W(t-8) XOR W(t-14) XOR W(t-16)) <<< 1

     #A = H0, B = H1, C = H2, D = H3, E = H4

     #For t = 0 to 79 do:

         #TEMP = A<<<5 + f(t;B,C,D) + E + W(t) + K(t)

         #E = D, D = C, C = B<<<30, B = A, A = TEMP

     #End of for loop

     #H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E

   #End of for loop

#ADOPTED FROM: Herong's Cryptography Notes at: http://www.herongyang.com/crypto/

import sha1, sys

s=raw_input("Enter string to be converted to SHA-1 hash: ")

def sha(f):


shaHash = sha1.sha1()


shaHash.update( f )


return shaHash

def whiten(x):#input string, returns whitened string


count=0


y=''


for ch in x:#for every char in x



count=count+1



y=y+ch #add the current char to string y (making a dupe of x)



if count%3==0: #if count is multiple of 3




y=y+'00' #insert whitening


return y

def interleaving(x):


count=0


y=''


for ch in x:



count=count+1



y=y+ch*2


return y

wh=whiten(s)

inter=interleaving(s)

h=sha(s)

j=sha(wh)

k=sha(inter)

whiteAndInter=whiten(inter)

l=sha(whiteAndInter)

if len( sys.argv ) > 1:


shaHash = sha1.sha1()


try:



print "Reading " + sys.argv[1] + "..."



theFile = file( sys.argv[1], 'rb' )



while True:




# read a chunk




chunk = theFile.read( 8192 )




# reached end of file, return the header




if len( chunk ) == 0: break;




# process the chunk




shaHash.update( chunk )



theFile.close()



print "SHA-1: " + shaHash.hexdigest()


except IOError, e: print e

else:


print "encryption of original string:",h.hexdigest()


print "whitened string:",wh


print "encryption of whitened string:",j.hexdigest()


print "interleaved string:",inter


print "encryption of interleaving string:",k.hexdigest()


print "interleaved AND whitened string:",whiteAndInter


print "encryption of whitened + interleaved string:",l.hexdigest()

