
Securing Encryption Algorithms with
Pre-image Disturbance

Betty Huang

October 27, 2009

Abstract

Since 2005, collision factors have been found for the SHA-1 algo-
rithm. This paper aims to provide several mechanisms to improve
the applicability of the algorithm for areas that are not able to adopt
a new standard readily. Authors such as Yiqun Lisa Yin, Michael
Szydlo, and various members of the National Institute of Standards
and Technology have written about the possibilty of modifying the
original input in order to reduce the likelihood of collisions/pre-image
attacks, but none have tested extensively on how much the random-
ization would increase the efforts of decrpytion. I hope to be able
to test a (likely simplified) version of the techniques against several
sophisticated collision-based attacks.

1 Introduction

1.1 Purpose

Since the advent of the encryption algorithms, there have been numerous
attempts to reverse engineer the process in order to return the original in-
put. Thus, the response of NIST has been to develop stronger algorithms.
The weaker, ”obsolete” algorithm is then cycled out of use. However, the
implementation of a stronger security standard may take years. However,
there is a need for a method that can reduce the chances of breaking the en-
cryption algorithm, without modifying the algorithm itself. This would not
be as difficult to implement, and can secure the privacy of individuals while

1



the administrators switch to a newer algorithm. Thus, my project seeks to
find out how ”efficient” (ie. how much effort a collision attack would require)
these modifications are.

1.2 Scope of Study

The field of study will be in encryption and cryptanalysis, mostly in Python/C.

2 Review of Literature

Two articles have proven to be particularly useful in constructing an idea.
Collision-Resistant usage of MD5 and SHA-1 via Message Preprocessing, by
Yin and Szydlo, offers methods of implementing these preemptive techniques.
Randomized Hashing for Digital Signatures by Quynh Dang also outlined the
need for a security standard using pre-image processing techniques. There
have also been several papers that detailed streamlined processes to break
the MD5, but one in particular mentions the usage of tunnelling, which is a
vast improvement over using differentials that required sufficient conditions
(Wang et al.); instead of requiring effort values of pow(2,29), Klima’s method
on generating Points of Verifications (POVs), which are necessary to gener-
ate collisions. Klima’s method is known as a multi-message modification
method, which requires that each block individually in the MD5 hash would
be considered in finding collisions.

3 Procedure and Methodolgy

Most of the research and advances in this field have written their code in C,
but it would be more convenient to write the code in Python, which has a
built in MD5 hash function. Currently, I have preprocessing code written
in python for SHA-1, but the tunneling code available is only written in C
(and for MD5).If it is possible, I will attempt to recode the method that
Klima outlined for the SHA family of algorithms and analyze results from
there; as of now, finding collisions for MD5 averages 30.1 seconds on my
notebook, which may be improved if the pre-processing technique were to be
applied. Unforunately, Klima does not give an indication of what inputs the
tunneling program receives, which may be difficult in the future for testing
unconvential strings (or particularly long strings)

2



3.1 Testing

The current analysis of results of preprocessing strings (time analysis to be
done second quarter):

3.2 Results

I expect that the test runs with message preprocessing will require more
effort than the test runs that do not use the technique. A time graph of the
resultant data could be used as a visual. This project has value to system
administrators that do not have the time/resources to implement newer,
more secure algorithms, as they will be able to manage their data without
worrying as much on the possibility of attacks.

References

[1] V. Klima, “Tunnels in Hash Functions: MD5 Collisions Within a
Minute”, 18 March, 2006.

[2] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions”,
6 March, 2004.

[3] Y. Sasaki and Y. Naito and N. Kunihiro and K. Ohta, “Improved Col-
lision Attack on MD5”, 2005.

[4] M. Szydlo and Y. Yin, ”Collision-Resistant Usage of MD5 and SHA-1
Via Message Preprocessing”, 2006.

3


