
Securing the SHA-1 Algorithm Using Pre-
Processing Techniques

Betty Huang

Computer Systems Lab 2009-2010
Abstract
Since 2005, collision factors have been found 
for the SHA-1 algorithm. This paper aims to 
provide several mechanisms to improve the 
applicability of the algorithm for areas that are 
not able to adopt a new standard readily. 
Authors such as Yiqun Lisa Yin, Michael Szydlo, 
and various members of the National Institute of 
Standards and Technology have written about 
the possibilty of modifying the original input in 
order to reduce the likelihood of collisions/pre-
image attacks, but none have tested 
extensively on how much the randomization 
would increase the efforts of decrpytion. I hope 
to be able to test a (likely simplified) version of 
the techniques against several sophisticated 
collision-based attacks.

Background and Introduction

Most encryption algorithms are designed to be one-
way; that is, they prevent reverse engineering to 
receive the original message inputted by the user. 
Usually, the process of encryption consists of a pre-
image (plaintext), which is then put into a method in 
order to return a post-image (encrypted text). Then, 
this document carries a unique “signature,” which is 
used to verify the validity of the document. Hash 
functions are designed to be 1-1 (that is, every 
combination message M[m1, m2, m3] has a unique 
encrypted text associated with it). 

There are two primary types of attacks against these 
encryption algorithms. First, pre-image processing 
works in an attempt to retrieve the plaintext from the 
encrypted text. This is usually difficult and exhaustive 
for computer systems, and generally infeasible for 
anyone without extensive resources. Second, collision 
attacks aims to find areas in which two messages are 
similar in nature, in order to find another message that 
matches the encrypted text of the first message. In a 
visual example:

Discussion

Most of the research and advances in this field have written 
their code in C, but it would be more convenient to write the 
code in Python, which has a built in MD5 hash function. 
Currently, I have preprocessing code written in python for 
SHA-1, but the tunneling code available is only written in C 
(and for MD5).If it is possible, I will attempt to recode the 
method that Klima outlined for the SHA family of algorithms 
and analyze results from there; as of now, finding collisions 
for MD5 averages 30.1 seconds on my notebook, which 
may be improved if the pre-processing technique were to 
be applied. Unforunately, Klima does not give an indication 
of what inputs the tunneling program receives, which may 
be difficult in the future for testing unconvential strings (or 
particularly long strings)

Results
I expect that the test runs with message preprocessing 
will require more effort than the test runs that do not use 
the technique. A time graph of the resultant data could 
be used as a visual. This project has value to system 
administrators that do not have the time/resources to 
implement newer, more secure algorithms, as they will 
be able to manage their data without worrying as much 
on the possibility of attacks.


	Slide 1

