
Agent-Based Modeling of Urban 
Society and Interactions

Creating a Realistic City Simulation in Order to Model Infections

Andrew Imm
TJHSST Computer Systems Research Lab

2009-2010

Agents moving towards the green square in the center of the map.

Abstract
Current systems used to model the spread of disease treat populations as 
single entities, and neglect the actions of individuals. By developing an 
agent-based simulation focused upon the accurate modeling of social 
interactions seen in an urban environment, a testing bed that resembles a 
modern city arises. This testing bed --- with its accurate modeling of day-to-
day interactions within a city --- provides a far better system to use when 
developing epidemiology simulations. Using an implementation of goal-
oriented agents who are guided by a number of variables that make up their 
"personality," this program attempts to create this urban model and use the 
system to run a number of epidemiological studies.

Background
In the field of epidemiology, most models used to predict the outcomes of 
plagues and epidemics are math-based. They treat the entire population of a 
region or nation as a single entity. This take on the problem of studying the 
spread of disease has one major downfall --- it assumes that all members of 
the population have similar behaviors. If any stratification is done to divide 
the population into subgroups, these are generally only related to 
succeptibility to the disease in the study. In other words, the unique 
characteristics of individuals are lost. An agent-based model, while more 
processor-intensive than a strict mathematical model, brings into play this 
individuality. However, past models that took an agent-based approach were 
very simplistic. For instance, viral modeling has been popular in the TJHSST 
Computer Systems Research Lab for years, but nearly every project has 
involved agents moving randomly within a closed, featureless environment. 
Effectively, these simulations resembled nothing more than an experiment of 
specialized bacteria moving around in a petri dish --- hardly an experiment 
that can be used to make generalizations or conclusions about a human 
population. For such conclusions, the agents in the model must act as 
humans do; this necessity provides the reason for developing an accurate 
simulation of an urban society

Description of Simulation
The simulation makes up the majority of the code written for this project. 
Initially, it loads a map file that tells the simulation how to construct the city. It 
then loads an agent file which tells the program how to configure the virtual 
city's population. Each agent is assigned a name, a schedule, and a 
"personality" --- a set of preferences that dictate how likely the agent is to 
perform various actions. Once the world and its inhabitants have been built, the 
program initializes its internal clock to 12:00 midnight on day 0. As the model 
runs, the virtual clock updates, and eventually agents wake up. As time 
progresses in the simulation, the agents go about the daily routines dictated in 
their schedules, navigating the city using the simulation's path-finding 
algorithm. Inherently, the agents encounter others throughout the day, and 
begin to remember other agents whom they often see. These memories of 
acquaintances are the beginning of the agent's social network: a stored list of 
friends and colleagues that allows the agent to keep track of people it has 
already met. The agent's list of acquaintances also keeps track of how well the 
agent knows others; this data is used by the agent to decide whom to interact 
with. As the simulation ages, the virtual city begins to resemble its real 
counterpart. Agents become established in their routines, and have dependable 
networks of friends that keep them socially active. At this point, a range of tests 
can begin in the simulation. Manipulation or addition of variables --- such as a 
virus --- at this stage ensures that the results resemble a real-world reaction as 
best as possible.

Discussion
Currently, the simulation is at a stage where it can load a map and populate 
the world with random agents. The agents then can be told to navigate to 
any square on the map by clicking. The simulation also keeps track of virtual 
time, although the internal clock is not currently used by the agents to guide 
their actions. The main purpose of the simulation at this point is to 
demonstrate the path-finding algorithm. The other large piece of code is the 
map builder, which currently creates maps with far more features than those 
that are used in the simulation at this point. The map builder features a 
graphical user interface that makes creation of the map much easier than 
editing a text file by hand.

Additional Programs
This project requires the creation of other programs that speed up the process 
of development. For instance, the simulation uses complex files to store maps, 
and the easiest way to create these maps is with a secondary program. The 
map builder allows the user to create maps with a graphical interface that 
displays the map as it will appear when the simulation is run. While such 
programs are not used in the final simulation, the products they create enable 
the experiments of this project, and these programs are therefore crucial to the 
completion of this project.

Tests
In order to improve the efficiency of the program and determine the optimal 
scale of the simulation, various tests will be used to analyze the program's 
internal algorithms. These tests will import methods from the simulation and 
run them on large sets of data to determine their practical limits. One algorithm 
that is very important to test is the path-finding method. This is one of the most 
frequently-called methods in the simulation, and it needs to be tested to 
determine how many times it can be run per program cycle before a noticeable 
lag occurs. Testing it again and again with large sets of data will help to 
determine this number. These tests are like the additional programs in that their 
code does not appear in the final project. Instead, they are used to develop and 
refine the simulation so that its final state is the optimal version.

The map builder, featuring a graphic user interface.


	Slide 1

