Proving the Speed of Parallel Processing In the Open Computing Language Through an Investment Analysis Simulation

Computer Systems Mentorship Project Proposal - September 2009

By Jason Israel

The purpose of this project is to demonstrate the increase in speed involved by using the Open Computing Language (OpenCL) to process large amounts of data. The data set is historical and current stock values. The program will analyze the data and make simple buy sell predictions. This project is also trying to prove that this method can be applied to this problem.

The scope of this project is really dependant on time. The main goal, at a minimum, is to prove OpenCL’s speed, which can be done by running the program in parallel and outside of parallel using large amounts of historical data. My mentor has gotten permission from Apple’s office in Reston to use their resources for testing. This means that I will have access to many compatible computers allowing the program to be run almost instantaneously. I plan to make the program able to obtain real-time data, interpret it instantaneously, and execute decisions so that it can be tested in the actual market. This project also has potential to be presented at Apple’s next WWDC conference, where they will probably want to show that OpenCL works and that it can be applied to many different types of problems. For this to happen, I would probably have to make a presentable visual component that will make the output to the project more interesting.

OpenCL was released on August 28 so specific reading in that field is somewhat limited. However, I have read through the OpenCL specification from Khronos, which can be found online at <http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf>. The paper talks about how the language works and how to code in it correctly. I used this document to basically teach myself the language along with the small amount of available sample code in the document and from Apple. I have also started to do some reading on stock market analysis. One article I have looked through is “The Tao of Alpha”, which explains the uses of alpha and beta values and can be found at <http://ilukacg.com/articles/Tao%20of%20Alpha.pdf>.

OpenCL functions as an extension of C, so a large portion of my code will be a mix of these two languages. It is possible that other languages will be involved to a lesser extent. In fact, I already have a file converter written in Python that makes it easier for C’s simpler scanners to read in data for the main program. It is also likely that another language will be used to access and format the data. Those results will be fed to the main program for analysis.

The testing for the program is somewhat simple. It will be run in serial for a baseline time. Then it will be executed in parallel on one computer and it will potentially be tested on a network of computers in Apple’s local lab. The time differences will be recorded as results. The processing power of the computer and the code run in parallel versus serial function as independent variables, the time it takes for the code to execute is the dependant variable, and the code and the data are constants.

If the code is executed in a real-time market, which will only be done once the testing above is complete, the amount of output increases. Not only is the time it takes for a decision to be made recorded, but a simulated initial monetary amount and the value of the investments will be tracked. Keep in mind this is secondary data and is not crucial to the project, it is more to test whether this program is relevant in the real world.

If I do test the project in the market, I will probably spend some time writing a more sophisticated decision algorithm that will use a smaller amount of stocks that are known to outperform the market. Decisions will be made not only on the stocks recent change and historical behavior, but also on the mood of the market (right now the market is pretty bullish), the market cap, the behavior of stock averages, the volume of trades made in that stock, and other market factors.

It is likely that the program will execute relatively slowly in serial, decreasing in speed every time a stock is added. In parallel, I expect the program to execute almost instantaneously, and be virtually unaffected by the addition of more stocks. If the program is executed in a real time market, receiving data and transmitting results are likely to hinder the program’s progress.

