COMPUTER SYSTEMS RESEARCH 
Code Writeup of your program, example report form 2009-2010 

1. Jason Koenig, Prd. 5

2. Date of this version of your program: 10/30/09

3. Project title: Design and Implementation of a Functional Programming Language


Currently the code is split into a number of Python files. Each is responsible for a specific module of the interpreter. A number of smaller programs act as glue, pulling together the various modules and actually performing the execution. The first part is the lexical analyzer, which turns the sequence of characters into a sequence of tokens. It also parses

the constants to produce values, and un-escapes the strings to produce an in memory representation.


The parser is the next stage. The parser turns the linear token stream into the first revision

of the graph that will eventually be executed as the program. The parser has many lines of code, but as it is a simple recursive descent parser, it is not terribly complex to understand. In the Python

 version, techniques were used to make the code smaller, in an attempt to make it more concise and readable.


The parser hands it's graph to the optimizer. Despite it's name, the optimizer has a larger role

 than simply
to make the code execute faster. The optimizer is responsible for the transformation

 of the graph from a lexical one into one which the executor can use. This involves the removal of variable names,

 and the reduction of constructs such as \code{let} from their tree representation into the graph

 form. It also performs lambda lifting, to allow the code to be compiled into a linear instruction stream. A compiler would produce its output at this stage, while an interpreter would continue on.


The executor is the final stage of program execution. The interpreter is responsible for walking the

 graph and performing the instructions found there.


The very latest implementation breaks some functionality, as I am in the middle of implementing supercombinator reduction. The conversion from parser output to a form the executor can use is the more complex part, and that is the part that is not implemented. Thus the interpreter will crash when given certain inputs, mostly containing user defined functions. 

4. What do you expect to work on next quarter, in relation to the goal of your project for the year? 


My goals for next quarter include finishing the Python version of the interpreter, as well as finishing up the language definition. I would like to have all of the final features of the language implemented. Once this is done, I will port my interpreter over to C/C++ to make it faster. I can also begin work at that time on the interface between my language and others. This will be crucial in making my language useful.

