Functional Programming Language Design and
Implementation

TJHSST Computer Systems Lab 2009-2010

Jason Koenig
Latimer Prd. 5

October 28, 2009

Abstract

Scripting languages have increased greatly in
popularity in recent years with the growing
power of computers. The trade off of runtime
and programmer time is increasing favoring
using more runtime. However, most current
scripting languages are imperative. A lan-
guage is developed which is primarily func-
tional in style. The language has novel fea-
tures which allow the base interpreter to be
small in size, will the lack of features such
as eval allow the programs to be optimized
easily.

1 Introduction

The purpose of my project is to develop a
functional style programming language. This
include both the language definition and a
sample implementation. The language is sim-
ilar to Lisp, but contains features to make it
friendlier to imperative programmers. The
initial version will be interpreted, but I ex-
pect to eventually at least partially compile
code. The first interpreter has been written
in Python, but the final implementation will

be in C for speed. 1 also plan to include
some optimization so that the language is not
too slow. This can be everything from sim-
ple things such as constant propagation to
complex things such as an optimizing G-code
system.

One goal is to make the interpreter as small
as possible, allowing the language to easily be
embedded in other programs. This will al-
low my language to be used both on its own,
and embedded as a scripting language like
Python. Another goal is to create a language
that allows both functional and imperative
styles in the same language. Some of these
features are similar to Lisp and Javascript,
such as a definite execution order and al-
lowance of local variables. [will also im-
plement control structures such as while and
foreach.

Beyond the implementation, I will also de-
velop a series of tutorials and example pro-
grams that will assist in learning my new lan-
guage. This will be important if my language
is to become anything other than a toy lan-
guage.

2 Background

There have been numerous functional lan-
guages over the years. The heaviest influ-
ences are from Lisp. Lisp has a definite execu-
tion order, and has support for resettable lo-
cal variables. Lisp is very complex, however,
and the interpreter is very large. It also has a
complex and diversified family of languages,
which makes it quite difficult to learn ’Lisp’,
rather than Scheme or Common Lisp or one
of it’s derivatives. Further, Lisp has a very
large standard library, which makes it diffi-
cult to port cleanly. My language would be
focused on simplicity and speed, rather than
on supporting every possible feature. This
makes it easy to port.

Haskell shares more of a syntactic repre-
sentation with my language. It however, is
completely functional, which means no vari-
able assignments. It is also lazy, which means
computation is deferred until the last possible
moment. Thus things like function side ef-
fects are not allowed. In languages like C++,
sometimes expressions are evaluated simply
for their side effect, like accessing a mem-
ory location to bring it into the cache. In
Haskell, this is impossible, as simply access-
ing something is not enough to force its eval-
uation. This in turn forces the programmer
into the functional style, which makes some
operations, like input and output, harder. It
also requires a shift in thought process to un-
derstand. I want to avoid this as much as
possible in my language. By supporting im-
perative programming, I will ease more peo-
ple into the functional style, and give my lan-
guage a higher chance of success.

Other similar languages focus on having
a strong mathematical foundation. My lan-
guage is not designed with mathematical el-
egance in mind, but rather with being a con-
crete language that is useful. Lisp uses the

same representation to represent code and
data. While this makes certain kinds of pro-
gramming easier, it is much more difficult to
optimize, because the original representation
must be retained and the optimized version
must be recreated when the code is modified.
Further, these languages tend to provide
functions such as eval that allow a string to
be executed as if it were code. While this
is useful in producing flexible code, in prac-
tice its uses are extremely limited and can be
avoided by proper software engineering.

3 Design

In my language, like other functional lan-
guages, a program is executed by evaluating
the main expression. This expression is usu-
ally composed of sub-expressions, which are
then composed of sub-expressions, and so on.

A program in this language is encoded us-
ing ASCII formatted text, which may be in
a file, on a stream, in a buffer in memory,
etc. The program is first divided into to-
kens. Then a tree is created from these to-
kens, which is then executed. The language is
sometimes ambiguous. In these cases, paren-
theses are required to disambiguate.

This language uses infix notation for most
expressions. The exception to this rule is the
control structures, which are denoted with a
special initial token and possibly a series of
internal tokens. Thus the type of a given
subexpression can be determined solely by
it’s first token. Thus the language can be
parsed by a simple recursive descent with
backtracking parser. Operator precedence
follows rules much like those of other C-
derived languages.

My language uses the . (dot) operator to
represent function application. Most simi-
lar languages use whitespace to separate the

ROOT(11)

=(2) ~(4) (8) #2(6)

$x(0) #5(1) ’T{% %m

Figure 1: The graph after the parser stage.
Notice that the let expression holds a list
of assignments (in this case only one). The
numbers in parentheses are the node num-
bers, which are like pointers to the node.

arguments. By using a separate character,
function application becomes an infix oper-
ation, which makes the syntax and parser
much simpler. Almost all operations other
than lambda definition, literal list specifica-
tion, and control structures are represented
as infix expressions. This is far more intu-
itive than the prefix notation of Lisp, and
matches expressions in almost all imperative
languages.

The language has support for the let con-
struct, which allows local definitions, as well
as variables in the imperative style. The lan-
guage is lazy, which means functions are not
evaluated until the results are needed. The
current model only accounts for one level of
'need’, but future iterations will likely include
support for ’strong’ and 'weak’ need. Built
in operators and functions such as +, ->,
and reduce would ’strongly’ need their ar-
guments, while user defined functions would
'weakly” need their arguments. Closures
would only evaluate themselves when they

are strongly needed, but regular expressions
would do so only on weak need. This would
cause expressions such as

let

two = {x,y | do [id y, id x,0] }
in

two. (print."x").(print."y")}

to print "xy” rather than "yx”. This is what
most imperative programmers would expect,
as well as those used to Lisp-like semantics. If
the function two had been called on two clo-
sures instead, then the evaluation of the print
statements would have been delayed until the
code had entered the do construct, in which
case the

Other similar languages focus on having
a strong mathematical foundation. My lan-
guage is not designed with mathematical el-
egance in mind, but rather with being a con-
crete language that is useful. Lisp uses the
same representation to represent code and
data. While this makes certain kinds of pro-
gramming easier, it is much more difficult to
optimize, because the original representation
must be retained and the optimized version
must be recreated when the code is modified.

Further, these languages tend to provide
functions such as eval that allow a string to
be executed as if it were code. While this
is useful in producing flexible code, in prac-
tice its uses are extremely limited and can be
avoided by proper software engineering.

4 Implementation

The interpreter is divided into a number of
relatively independent sections. The first
part is the lexical analyzer, which turns the
sequence of characters into a sequence of to-
kens. It also parses the constants to produce

values, and un-escapes the strings to produce
an in memory representation.

The parser is the next stage. The parser
turns the linear token stream into the first re-
vision of the graph that will eventually be ex-
ecuted as the program. The parser has many
lines of code, but as it is a simple recursive de-
scent parser, it is not terribly complex to un-
derstand. In the Python version, techniques
were used to make the code smaller, in an at-
tempt to make it more concise and readable.

The parser hands it’s graph to the opti-
mizer. Despite it’s name, the optimizer has a
larger role than simply to make the code ex-
ecute faster. The optimizer is responsible for
the transformation of the graph from a lexi-
cal one into one which the executor can use.
This involves the removal of variable names,
and the reduction of constructs such as let
from their tree representation into the graph
form. It also performs lambda lifting, to al-
low the code to be compiled into a linear in-
struction stream. A compiler would produce
its output at this stage, while an interpreter
would continue on.

The executor is the final stage of program
execution. The interpreter is responsible for
walking the graph and performing the in-
structions found there.

5 Supplemental Materials

In addition to a reference implementation, a
language definition is being developed. The
language will be rigorously specified, as this
will ensure that programs are easily ported
between systems. In addition, tutorials and
documentation of how to embed the inter-
preter in other programs will be developed.
This will enable the language to be easily
learned, as well as used as an interface into
other systems.

6 Results

The language currently can perform reduc-
tion of complex mathematical expressions. It
also has support for a large number of the fi-
nal operators that are part of the core lan-
guage. It can perform let reduction, as
well as execute simple user defined functions.
Lists can be traversed using the head and
tail functions. There is no support for im-
perative programming. Recursive functions
do not work properly, but they should with
the implementation of lambda lifting in the
optimizer (support already exists in the ex-
ecutor). Both a program that reads in source
code from a file, as well as one that accepts
user input from the command line were cre-
ated.

7 Future Work

Future work on my language will include the
further development of the core functions, as
well as the implementation of lambda lifting
in the optimizer. The standard library needs
to be developed, as well as bindings to com-
mon libraries. Example programs demon-
strating how the language can be embedded
in other languages would provide a conve-
nient reference for other programmers. The
optimizer can be improved to do things such
as constant propagation, tail recursion opti-
mization, and code compilation.

