COMPUTER SYSTEMS RESEARCH 
Code Writeup of your program, example report form 2009-2010 

1. Your name: Stuart Maier, Period: 2

2. Date of this version of your program: Q1

3. Project title: Parallel Ray Tracer

data.xml:

The configuration file that holds the XML data about the scene.

hosts.txt:

The file that lists all of the hosts that MPI runs on. The main computer must be listed at the top of the list, or MPI will not run correctly.

object.c:

int ray_sphere_intersection(struct vector, struct vector, struct object, struct vector*, struct vector*, int*);

Calculates the intersection points between a ray and a sphere, and returns the different points where they intersect.

int ray_plane_intersection(struct vector, struct vector, struct object, struct vector*);

Calculates the intersection points between a ray and a plane, and returns the different points where they intersect.

object.h:

enum object_type;

A list of the different types of objects.

struct object;

Contains information about a single object in the scene, including its position and size, as well as its optical properties.

renderer.c:

void renderer_init(struct renderer*, int, int, struct vector, int);

Initializes a rendering structure with default values.

void renderer_add_object_common(struct renderer*, struct vector, struct vector, struct vector, struct vector, GLdouble, struct vector, struct vector, GLdouble);

Common code for creating all objects. Only called from other object creation functions within the renderer.

void renderer_add_sphere(struct renderer*, struct vector, GLdouble, struct vector, struct vector, struct vector, struct vector, GLdouble, struct vector, struct vector, GLdouble);

Creates a sphere within the current renderer from the object information provided.

void renderer_add_plane(struct renderer*, struct vector, struct vector, struct vector, struct vector, struct vector, struct vector, GLdouble, struct vector, struct vector, GLdouble);

Creates a plane within the current renderer from the object information provided.

int renderer_find_intersection(struct renderer*, struct vector, struct vector, struct vector*, int*);

Finds the closest object in the scene that intersects with a specified ray.

void renderer_illuminate_point(struct renderer*, struct vector, int, struct vector, struct vector, struct vector*, struct vector);

Perfoms most of the illumination calculations on a single ray.

void renderer_ray(struct renderer*, struct vector, struct vector, struct vector*, int, struct vector);

Recursive function that traces a single ray throughout the scene.

void renderer_render(struct renderer*);

Ray traces the entire part of the scene that the renderer is set to render.

renderer.h:

struct renderer;

An object that holds the data of all of the objects in the scene, as well as the camera, screen, and the area to render.

vector.c:

struct vector vector_add(struct vector, struct vector);

Adds two vectors together.

struct vector vector_subtract(struct vector, struct vector);

Subtract one vector from another.

struct vector vector_scale(struct vector, GLdouble);

Scales a vector.

struct vector vector_multiply(struct vector, struct vector);

Multiplies the components of two vectors together.

GLdouble vector_dot_product(struct vector, struct vector);

Calculates the dot product of two vectors.

GLdouble vector_mag(struct vector);

Calculates the magnitude of a vector.

GLdouble vector_mag_squared(struct vector);

Calculates the squared magnitude of a vector.

struct vector vector_normalize(struct vector);

Normalizes a vector.

vector.h:

struct vector;

Holds three GLdoubles and treats them as a vector.

xml.c:

void xml_process_file(struct renderer*);

Turns the data in the config file into scene data.

