
Gathering Software Metrics from
Software Version Control Systems

and Automated Build Systems
Mark Cheung

Computer Systems Lab 2009-2010

 Abstract
Software metrics are tools that can be used to
measure in quantity the software development.
They are often used to estimate the cost and
resource requirements, the productivity, the data
collection, the code quality, and other software
performances. The purpose of this project is to
develop tools that support the automated
production of software metrics from version
control systems such as Subversion and build
systems like CruiseControl. The project produces
code count programs that generate the physical
and logical source lines of codes (SLOC) for Java
and Midas code. The project will?? also includes
the development of tools that assist in generating
reports with the COCOMO model and performing
analysis of the results.

Fig 1: label the figures

Introduction

In 2001, Red Hat Linux 7.1 was found to hold
30,152,114 Physical Source Lines of Code.
Using the Basic COCOMO model, this figure
implies 7955.75 person-years development
effort, making a total of 6.53 years and
$1,074,713,481 cost (Wheeler). Although
these figures are estimates and assumptions
were made in calculation, the resulting
Physical SLOC can still give us insights into
the Linux 7.1 system.

Estimating software cost requires careful
calculation and analysis of the software project.
A mistake in evaluation can destabilize the
development by allocating either too much
or too little resources.

Discussion of Methods

1) Evaluate the Northrop Grumman Ultimate
Code Line Accumulator Tool (based on USC
CodeCount)
2) Extend CodeCount language support as
necessary with C: (i.e. X-MIDAS and
NextMIDAS scripting languages, Java, Python)
(done)
3) Enhance CodeCount as necessary to
support counting of auto-generated source code
(done)
4) Select/Develop tool to perform automatic
production of metrics and store them in a
database (Hackystat)
5) Develop single-source plugins for Eclipse
RAP and Eclipse RCP with Java to support
report generation and analysis of metrics
database.
6) Extend metrics collection to include code-
quality, code-reuse, code-churn data, build
failures, etc.

Results and Conclusions

The focus of your
project. What you
conclude, what it means.

Mentored by Mr. Michael Ihde, Northrop Grumman

Background

Source Lines of Code (SLOC) is a code metrics
for counting the number of lines for a set of
programs and thereby estimating the amount
of effort required. There are various types of
counting that can be done, including total lines,
commands, compiler directives, executive
statements, non-blank lines, physical lines,
logical lines, tokens. Tokens are operators or
operands such as “while”, and “eof.” SLOC
measures are divided into two major types:
physical and logical.

Fig 2: Label the figures.
 Make sure
the figures can be read.

SCLC CodeCount
total

CodeCount
generated

CodeCou
nt (not

generated
)

 Physical
SLOC

Logical SLOC Physical
SLOC

Logi
cal
SLO
C

Physi
cal
SLO
C

Logic
al
SLO
C

number of
files

650 650 650 x x x x

total lines 17015
0

170150 146808 110928 929
30

5922
2

5387
8

blank lines 16252 16252 16252 9525 952
5

6727 6727

comments 86665 86210 86210 59469 594
69

2674
1

2674
1

embedded x 441 441 328 328 113 113

compiler
directives

x 7321 7321 0 0 7321 7321

data
declarations

x 12256 4512 7980 268
7

4276 1825

executive
instructions

x 48111 32513 33954 212
49

1415
7

1126
4

non-comment
source lines

67669 67688 44346 41934 239
36

2575
4

2041
0

Auto-
Generate-
Source-Line

47114 x x x x x x

asembly-
equivalent-
source-lines

40601
4

x x x x x x

	Slide 1
	Slide 2

