COMPUTER SYSTEMS RESEARCH 
Code Writeup of your program, example report form 2009-2010 

1. Your name: Tara Naughton, Period: 2 

2. Date of this version of your program: 10/27/09

3. Project title: Enhancing the Enlargement of Images

4. Describe how your program runs as of this version.  Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

As of now, I have the two typically used methods of image resizing: the pixel replication method, and part of the interpolation method. Both programs take black and white .pgm inputs. This is the finished version of my pixel replication method:

def main():

  scale=2

  fname=raw_input('Filename: ')

  outfile=open('output.pgm','w')

  s=open(fname).read().split()

  outfile.write(s[0])

  outfile.write('\n')

  width = int(s[9])

  height = int(s[10])

  outfile.write('%d '%(width*scale))


  outfile.write('%d'%(height*scale))

  outfile.write('\n')

  outfile.write(s[11])

  outfile.write('\n')

  result = []

  for k in range((width*scale)*(height*scale)):

    result.append(0)

  w=0

  while w < height*scale:

    l = 0

    while l < width*scale:

      sample = s[(w/scale) * width + (l/scale)+12]

      result[w * width*scale + l] = sample

      l += 1

    w += 1

  for k in range((width*scale)*(height*scale)):

    outfile.write('%s '%result[k])

    if k%(width*scale) == 0:

      outfile.write('\n')

  outfile.close()

This is what it produces:

[image: image1.png]



From the original input:

[image: image2.png]



This is the part of my interpolation code that creates a gradient between two different pixels:

def gradline(start,end,scale): 

 result = []

  for k in range(2*scale):

    result.append(0)

  result[0] = start

  result[2*scale-1] = end

  if start==end:

    grad= 0

  elif start > end:

    grad = (end-start+1)/(2*(scale-1))

  else:

     grad = (end-start-1)/(2*(scale-1))

  k=1

  while k < (2*scale)-2:

    temp = int(k*grad+start)

    k += 1

  print temp

Right now, they both crash on errors of input. My analysis of whether the algorithms succeed or fail is determined by sight; I can look at the output image produced and see if it really resizes the image to the appropriate scale factor and the results match up with what is expected from each method. The pixel replication method works perfectly, and the gradline part of the interpolation code works; I can’t test the entire algorithm until I finish the code for it, though.

5. What do you expect to work on next quarter, in relation to the goal of your project for the year? 

I expect to finish the interpolation algorithm almost immediately in the second quarter, then focus the second quarter on refining the two methods and creating a superior resizing technique. I plan to draw especially on the interpolation method, using that to resize certain parts of the image, while using a different technique to resize the edges of the image.

