
Image Deblurring and Noise Reduction in
Python

TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Vincent DeVito

June 16, 2010

Abstract

In the world of photography and machine vision, blurry images
can spell disaster. They can ruin an otherwise perfect photo or make
it impossible for a computer to recognize the image or certain com-
ponents of it for processing. The best way to counter this without
taking another, clearer picture is to utilize deconvolution techniques
to remove as much blur as possible. That is the design of this project.
My plan was to first design a program that takes an image, blurs it
using a known blur kernel, then deblurs it to reproduce the original
image. Then I created a program to take the noisy deblurred image
and smooth it using noise reduction. I used Python as my program-
ming language and the .pgm uncompressed image format. My success
was be measured simply by how much the output (deblurred) image
matches the input (original) image.

Keywords: deblurring, deconvolution, image processing, noise re-
duction

1



1 Introduction and

Background

The goal of this project was to create
a program that can take an image in-
put that has been blurred and to em-
ploy image deblurring techniques to
restore the image and create a sharp,
more recognizable output image with
as few blur artifacts and noise as pos-
sible.

1.1 Previous Research

1.1.1 Deblurring

I found a paper regarding im-
age deblurring and noise suppres-
sion called ”Image Deblurring with
Blurred/Noisy Image Pairs” by Lu
Yuan, et al. that I utilized in helping
me understand the techniques and al-
gorithms that go into reducing the
noise of and deblurring an image. In
their research they used a blurry im-
age with proper intensity and poor
sharpness and paired it with an iden-
tical picture with good sharpness but
poor intensity and riddled with noise
to create a sharp, correct intensity
output with few or no artifacts left
in the output image.

Another paper1 I read discusses
an algorithm that the group of re-
searchers discovered that allows for
a mostly accurate estimation of the

blur kernel, or the function through
which the pixel values of the image
are blurred. Their algorithm takes
four inputs: the blurry image, a sec-
tion of the image that has a good
sample of blurring (in case the im-
age is not uniformly blurred), if the
blur is estimated to be more hori-
zontal or more vertical, and the esti-
mated size of the blue kernel. Given
these inputs, their algorithm can suf-
ficiently estimate the blur kernel such
that the image, which was captured
using poor technique with a standard,
off-the-shelf camera, is satisfactorily
deblurred with few artifacts after de-
convolution. Any artifacts that are
left can generally be removed by an
experienced photo editor.

1.1.2 Noise Reduction

Noise reduction is the last step in
my deblurring process. I’ve learned
in previous computer science courses
that Gaussian smoothing (replacing
every pixel with a weighted aver-
age of its surrounding pixels) can re-
duce noise by averaging it with sur-
rounding color values. The prob-
lem exists, though, that it smooths
the image and therefore softens its
edges, reducing the desired effect of
the deblurring process. To learn how
to reduce noise and maintain edge
sharpness, I read a paper by Ger-
man scientist Dr. Holger Adelmann

1Source: Fergus

2



entitled ”An edge-sensitive noise re-
duction algorithm for image process-
ing.” In his paper, Adelmann dis-
cusses using a 5x5 neighborhood to
determine in which of four directions
the edge that pixel is located on is ori-
ented. Then, using that information,
Gaussian smoothing is applied using

a kernel that matches the direction
of the edge, instead of the normal 3x3
square kernel. The 5x5 analyzing ker-
nels and 3x3 Gaussian smoothing ker-
nels can be found below in Figure 1.
By using edge sensitive kernels, edge
sharpness is maintained while still re-
ducing noise.

Figure 1. The 5x5 neighborhoods (above) used to detect the edge
orientation about that pixel and the 3x3 kernels (below) that correspond

with those orientations. The fifth kernel (flat pattern) is used when no edge
is detected.

1.1.3 Other Research

Through my own work I have ac-
crued a detailed understanding of ba-
sic and intermediate image processing
techniques and algorithms from vari-
ous online worksheets and lessons at
http://homepages.inf.ed.ac.uk/rbf/
HIPR2/wksheets.htm. I plan to
use these techniques to help me
code and understand the more com-
plex concepts behind image deblur-
ring and the intermediate steps in-

volved. For example, I have exten-
sively used the section referring to
the Fourier Transform, located here:
http://homepages.inf.ed.ac.uk/rbf/
HIPR2/fourier.htm.

2 Development

2.1 Project Design

I used the programming language
Python to write the code for this

3



project. I decided to use Python be-
cause of its simplicity and adaptabil-
ity. As for the images, I used the
uncompressed, grayscale .pgm image
format. This allowed me to confirm
the accuracy of the outputs because
of the uncompressed nature of the
.pgm format, which means that the
image information doesn’t need to be
altered before being saved. Also, it is
much easier to code using the .pgm
format since it can be read in as and
saved as a string without using any
packages or software, also making it
more reliable.

Also, for the purposes of this
project, I chose to focus on motion
blur convolution and deconvolution.
This doesn’t affect the image to be
deblurred, but rather the design of
the kernel used to blur and deblur
the image. I found that my chosen
method of image division deconvolu-
tion doesn’t work correctly on other
forms of blur, such as Gaussian blur
and potentially out-of-focus camera
blur.

The first step in this project was
to artificially blur an input image
using a known and given blur ker-
nel. This is accomplished by convert-
ing both images to the frequency do-
main, using the Fast Fourier Trans-
form (FFT), point multiplying the
two images, then converting them
back to the spatial domain using
the Inverse Fast Fourier Transform
(IFFT). This is known as convolu-

tion.
The next step was the deconvo-

lution algorithm that, when given
an image and its known blur ker-
nel, could deblur the input image.
This is fairly straightforward and in-
volves the reverse of the aforemen-
tioned convolution algorithm. This
is done by instead point dividing the
blurred image by the blur kernel in
the frequency domain.

The final step was to take
the noisy image that was acquired
through the deconvolution process
and apply a noise reduction algo-
rithm. This noise reduction algo-
rithm attempted to remove as much
of the noise from the deblurred im-
age as possible, while still maintain-
ing sharpness and clarity.

2.2 Testing

My project’s success was measured
by its ability to take an artificially
blurred image and return it to its
original, sharp quality. I tested my
project’s adaptability and thorough-
ness by running a series of tests that
entailed attempting to deblur images
of different contrast and content with
varying magnitudes and directions of
blur. This tested my program’s abil-
ity to repair images regardless of im-
age content, or magnitude or direc-
tion of blur distortion, although there
will obviously be an upper limit to the
amount of blur that can plausibly be

4



removed. An example of what would
be deemed a successful run is illus-

trated below:

Figure 2. The image on the left is an example of a blurry image input, with
a particularly blurry section highlighted. The image on the right is the

same image, with the blurriness drastically reduced due to deconvolution.2

2.3 Theory

2.3.1 Fourier Transform

The Fourier Transform is heavily in-
volved with image convolution and
deconvolution because it allows for
greater speed and simpler code. The
Fourier Transform converts values in
an array from the spatial domain to
the frequency domain using a sum
of complex numbers, as given by the

equation:
The 2-Dimensional Discrete Fourier
Transform (DFT) does this us-
ing a matrix or 2D array of
values and uses a nested sum:

Since the 2-Dimensional Discrete
Fourier Transform uses a nested
sum, it can be separated to cre-
ate two 1-Dimensional Fourier
Transforms in a row, first in one
direction (vertically or horizon-
tally), then in the other direction.

This is known as the Fast Fourier
Transform (FFT) and runs signifi-
cantly faster than the DFT, since the
DFT has a runtime of O(n2) and the
FFT has a runtime of O(nlog2n). The
following is an example of a picture
being converted from the spatial do-
main to the frequency domain via the
Fourier Transform.

2Pictures from Source 3

5



is then transformed to

The reason the FFT is so impor-
tant to image convolution and decon-
volution is that it takes long itera-
tive algorithms and turns them into
simple point arithmetic. For exam-
ple, image convolution becomes as
simple as taking the Fourier Trans-
form of the image and the blur
kernel (known as the Point Spread
Function (PSF) after transforma-
tion), transforming them to the fre-
quency domain and point multi-
plying the two images. Then the
two images can be converted back
to the spatial domain by the In-
verse Fourier Transform, given by

and the result will be a blurry (convo-
luted) image. To reverse this process
and deconvolute the image, assum-
ing the blur kernel is known, is as
simple as point dividing the trans-
formed image by the PSF, instead of
multiplying.

The IDFT can also be separated
and turned into the Inverse Fast
Fourier Transform (IFFT). When us-
ing the IDFT or IFFT, though, the
values need to be the full complex
numbers from the Fourier Transform.
This means that the IFFT cannot be
performed on an image that is trans-
formed to display the magnitude or
the phase of the Fourier Transform.
This is demonstrated below in Figure
3.

Figure 3. This shows the original image, the result of the IFFT using only
the magnitude of the Fourier Transform output, and the result of the IFFT

using only the phase of the Fourier Transform output.3

3All images from Source: Young

6



2.4 Noise Reduction Al-
gorithm

As I mentioned in my previous re-
search on noise reduction algorithms
(section 1.1.2), I learned previously

that Gaussian smoothing can be em-
ployed to reduce the noise in an im-
age. However, this softens the image
(as seen below in Figure 4) and there-
fore is not a desirable approach.

Figure 4. Using Gaussian smoothing produces a cleaner image, but also an
undesirably soft/blurry output.

To start, I took the basic concept
of Gaussian smoothing (weighted av-
erage of the 3x3 neighborhood for
each pixel) and adapted it to better
handle noise. For each pixel, I took
the average of all the pixels in the 3x3
neighborhood. Then, I determined
which of the 9 pixels in the neighbor-
hood had values that fell within 15 of
the average and took the average of
those to use as the new pixel value.
This works by establishing a rough
range for what that pixel value should
be by analyzing the surround pixels in
conjunction with its own value. How-
ever, since noise is usually an extreme
value (high or low), any noise pixels
within that 3x3 neighborhood won’t
fall within the range, and therefore
will be excluded from the final aver-

age used to calculate the new pixel
value. In the event that none of the
neighboring pixels fall within the 30
point range, the value of the pixel
will remain unchanged. This reduces
the noise much better than a simple
weighted average of the 3x3 neighbor-
hood.

The problem still exists, however,
that the final output image is less
sharp than the original, noisy image.
To correct this problem, I added an
unsharp sharpening filter to my al-
gorithm. The unsharp filter works
by subtracting the smoothed version
of an image from the original image,
thus producing an image with only
the sharp edges from the original pic-
ture. The edge values are then scaled
(between .1 and .7; .6 in my algo-

7



rithm) and added back to the original
image, sharpening the edges of the
picture. By supplementing my dy-
namic Gaussian smoothing algorithm
with an unsharp filter, I designed a
successful noise reduction algorithm
that clears up a lot of noise without
losing very much sharpness in the im-
age.

3 Results

I completed my project as much as I
had originally expected. My convolu-
tion program works correctly and can
convolute any4 image using any blur
kernel. My deblurring program can
also deblur that image, as long as the
aforementioned blur kernel is an ac-
ceptable motion blur kernel, as men-
tioned in my project development,
section 2.1. A successful run is out-
lined below:

First the image is blurred using convolution with a known kernel

Then it is deblurred using deconvolution with that known kernel.

I have also developed a successful
noise reduction algorithm of my own.
To test its ability to reduce noise,
I compared its output to the out-
puts of the basic Gaussian smooth-
ing algorithm as well as the edge-

sensitive noise reduction algorithm I
mentioned previously in section 1.1.2.
My results were surprising, as my al-
gorithm seemed to surpass the abili-
ties of the other two algorithms. This
wasn’t surprising for the Gaussian

4For best results, I used a square image of size 128x128

8



smoothing algorithm, but I was im-
pressed when my results were com-
pared to those of the published edge-

sensitive algorithm. The results are
outlined below:

The noisy, deblurred image.

Figure 5. The outputs from the three tested noise reduction algorithms
(left to right): Gaussian smoothing, the published edge-sensitive noise

reduction algorithm, and my noise reduction algorithm.

As is evident in Figure 5, the
Gaussian smoothing algorithm clears
up some of the noise, but softens the
edges. The edge-sensitive noise re-
duction algorithm takes care of this,
but at the loss of not reducing as
much noise. My algorithm com-
bines the two and produces a clearer,
smooth output that also has sharp
edges.

3.1 Limitations

Even though I have deemed my
project successful within the goals
I originally set, there are obviously
limitations. First and foremost, my
deconvolution algorithm only works
with some kernels that fall within a
certain type of blur kernel. Any-
thing outside that category and my
program will just return unreadable
noise. Another limitation is simply
that my program needs the known

9



blur kernel to deblur the image; it
doesn’t have the ability to estimate
the kernel. This is a severe limitation
as it can only be used to deconvolute
artificially blurred images where the
kernel is known, it has no real world
applicability yet.

Another limitation of my

project is the vast difference in
color/intensity between the original
image and the final, corrected image.
In theory and ideally these two im-
ages will be identical, however, it can
be seen from Figure 6 that they are
very dissimilar in intensity.

Figure 6. The deblurred and noise reduced image (left) is much brighter
than the original image (right).

This also affects the contrast of
the image. I speculate that this hap-
pens because of the multiple trans-
forms the image undergoes through-
out the process (one logarithmic
transform for every convolution and
deconvolution). This could poten-
tially pose a problem in machine vi-
sion applications, though I expect
only because of the reduced contrast,
not the change in color/intensity,
which could possibly be adjusted us-
ing another, linear contrast stretching
transform.

3.2 Scope

The scope of this project is rather
narrow, but important. It pertains
only to blurry images, and in this
case only those blurred using a mo-
tion blur kernel, but the concept is
a rather large problem in the worlds
of image processing, photography,
and machine vision. In photogra-
phy, blurry images are undesirable
because they lack sharpness or clar-
ity and in machine vision, blurriness
can make an image indecipherable by
the computer or render certain pro-
cesses ineffective, such as edge de-
tection. These results can help ex-

10



plore the worlds of image deconvolu-
tion and noise reduction, within the
larger world of image correction.

4 Conclusions

I managed to transform and inversely
transform an image using the Fourier
Transform with complete success, as
well as successfully blur an image us-
ing convolution. I also was able to
deconvolute that blurry image with
some consistency, as long as a mo-
tion blur kernel was used. My noise
reduction algorithm worked success-
fully and arguably surpassed the abil-
ities of the published edge-sensitive
noise reduction algorithm I found in
my research.

4.1 Future Work

There is a lot of room for future
work on this project since and in this
field in general. The next area of

research would be into blur kernel
and point spread function types so
that the deconvolution process can be
made more adaptive and generalized,
since my program is very restrictive
and specific. The largest area for fu-
ture research for this project is the
one that is most applicable to the real
world and also the subject of much
study in the computer science com-
munity. This is the topic of blind de-
convolution, which estimates the blur
kernel from an image in which it is
not known (e.g. a naturally blurred
image acquired through poor image
capture) and then deconvolutes the
image based on this estimate. Re-
search is ongoing on trying to find the
most efficient and adaptive method of
estimating the blur kernel. Lastly, it
would be beneficial to look into color
or contrast correction algorithms in
an attempt to try and match the out-
put images color intensity and con-
trast with the original image so that
the output is as accurate as possible.

References

[1] Adelmann, H. G. (1999, March). An edge-sensitive noise reduction algo-
rithm for image processing. Computers in Biology and Medicine, 29(2),
137-145.

[2] Brayer, J. M. (n.d.). Introduction to the Fourier transform. In
Topics in human and computer vision. Retrieved from Univer-
sity of New Mexico Department of Computer Science website:
http://www.cs.unm.edu/ brayer/vision/fourier.html

11



[3] Convolution and deconvolution using the FFT. (1992). In Numerical
recipes in C: The art of scientific computing (pp. 538-545). Cambridge,
Massachusetts: Cambridge University Press.

[4] Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T.
(2006, July). Removing camera shake from a single photograph. ACM
Transactions on Graphics, 25(3), 787-794. doi:10.1145/1141911.1141956

[5] Fisher, R., Perkins, S., Walker, A., & Wolfart, E.
(2000, October). Hypermedia Image Processing Resource
(HIPR2) [Image processing learning resource]. Retrieved from
http://homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm

[6] Smith, S. W. (1997). A closer look at image convolution. In The scientist
and engineer’s guide to digital signal processing (pp. 418-422). Retrieved
from http://www.dspguide.com/

[7] Young, I. T., Gerbrands, J. J., van Vliet, L. J. (n.d.). Properties
of Fourier transforms. In Image processing fundamentals. Retrieved
from http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Properti-
2.html

[8] Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2007, July). Image deblur-
ring with blurred/noisy image pairs. ACM Transactions on Graphics,
26(3). doi:10.1145/1276377.1276379

12


