Simulation of Fluid Motion in a Shallow
Context in 3-Dimensions

Jacob Dominy

June 16, 2010

Abstract

As computer graphics become more advanced and realistic, it be-
comes necessary to learn how to recreate real-life events in a virtual
environment. The events that have proved most problematic in this
regard are those that occur in nature. Fluids, like water and air have
been especially difficult because of the number of situations and en-
vironments it is found in and the vast amount of rules that govern
its behavior. In this project I will investigate techniques to automate
simple, shallow fluid motion found in everyday life, and apply them
to computer modeling concepts.

Keywords: Computational Fluid Dynamics, Computer Graphics,
OpenGL, Navier-Stokes, Saint Venant

1 Introduction

2 Background

Computer graphics have found many
uses nowadays. It’s used for ani-
mated movies, video games, and sim-
ulation software. As technology has
progressed over the last few years,
however, the quality of this graphic
design has been increased dramati-
cally. Photorealistic animations are
now becoming commonplace. How-
ever, it is no longern good enough to
merely look realistic, computer gener-
ated models are expected to act real-
istic as well. Recreation of the mo-
tion of fluids has proved to be an
enduring conundrum for graphic de-
signers. This is because all computer
graphics are based on the combined
use of many 3-Dimensional objects.
This makes modeling solids very sim-
ple, but very difficult when it comes
to fluids. A deep understanding of
physics is also required to recreate
the motion of fluids as they are dic-
tated by a large set of rules in na-
ture. Because there are countless dif-
ferent situations and conditions that
occur in nature, encompassing all of
these possiblities has made it hard to
code realistic fluid motion. Several
different methods to approaching this
problem have been researched in this
field. The Navier-Stokes equations,
first proposed in 1822 provide a way

of understanding motion in incom-
pressible fluids. The Saint Venant
equations are also used, and these are
based on the Navier-Stokes equations
but applied in a context that does not
compensate for depth. There is also
an even simpler approach, called the
Shallow Water equations, that were
be used in this project.

2.1 Objectives

There has been a great deal of re-
search into the field of fluid dynamics
and the rules that govern fluids. The
objective is this project was to deter-
mine how these rules can be applied
in a simulated environment. Because
this is a very broad field of study,
this research focused only on liquid
fluids in small, standing, and shal-
low contexts. This way we were able
to isolate only a few variables to be
concerned with. In doing this, we
could ignore the factors of flow and
currents, like those found in rivers
and oceans, making the scope of the
project more specified and easier to
control.

3 Goal

The goal of this project was to cre-
ate a program that can model the
motion of a small, shallow body of
water when disturbed, such as rip-
ples and waves, in three dimensions.

It was meant to allow for user in-
put to dictate the nature and starting
place of the motion, as well as for the
changing of certain variables that can
change how the fluid operates. The
program was meant to allow for the
view of the fluid to be changed, let-
ting the user rotate the model to view
it from any angle and zoom in and
out.

3.1 Design Criteria

There were several elements that
I worked to incorporate into the
project. The first was obviously be
the window displaying the current 3
Dimensional model. I also planned
to incorporate mouse and keyboard
inputs to controls things such as the
view and orientation of the model and
the zooming in and out of it. In
addition, I had planed to use sev-
eral menus to control key variables in
the project. The program was also
meant to include realistic light effects
and the refraction of that light was
planned.

3.2 Expected Results

The goal of this project was a very
ambitious one, so while I had high
hopes for this project, I was uncer-
tain of it’s feasibility. My measure of
success was if I can have a running
simulation program that accepts all
appropriate inputs and shows a basic

system of using these inputs in the
changing of its modeling of fluids. I
definitely needed all the time I can get
for working on this project to com-
plete it. If a student next year would
like to continue in the same direction
as I, I would suggest the modeling of
currents such as those found in rivers
and oceans.

3.3 Related Work

The field of fluid dynamics is not lim-
ited to only liquids, and others have
performed research regarding the flow
of air and other gases [3]. This sort of
project has a number of uses in areas
such as aerodynamics and wind tun-
nel simulations. Similar methods can
also be applied to the study of waves
inside the earth.

4 Problem to Solve

4.1 Fluid Representation

Before even thinking about any fluid
dynamics equations, we first had to
consider how to represent the fluid in
a computer generated environment.
In the case of liquids, one of the most
popular options is to use a particle
system, in which each particle rep-
resents one water molecule and acts
independently of the others. This
is the most realistic looking method.
Another, similar method is to create

a large 3-Dimensional grid, called a
voxel field, and have each cell act as
a small section of the body of wa-
ter. These methods are very inten-
sive on computer resources, as they
require calculations for a very large
number of different objects. These
will not be used in this project, as
they are far too complicated for our
needs. Instead we will use what is
called a hight field. A height field is
a 2-Dimensional matrix of points that
represent points on the surface of our
liquid body. This field is displayed on
the XZ-plane to the viewer, and each
point in the grid has a height value,
which is then reflected on the Y-axis.
This method was the most reasonable
for our purposes, as our shallow body
of water was not concerned with the
flow of water below the surface.

4.2 Computational Fluid
Dynamics

After deciding on how to represent
liquid in 3-D space, we then had
to figure out how to make it move.
The most common method is the use
of the Navier-Stokes equations, dis-
covered in the 19th century. These
equations take into account variables
such as pressure, gravity, viscosity,
and density to describe velocity vec-
tors for every point in a body of
liquid. This equation is applied in
many different ways depending on

the context and often combined with
other mathematical ideas. Because
our situation only concerned a shal-
low body of water and thus we only
cared about its motion on the sur-
face, the Navier-Stokes equation can
be simplified to disregard the mo-
tion underneath the surface of the
body of water. However, the Navier-
Stokes equations were still too com-
plex for the purpose of this project,
so we used versions of the Shallow
Water equations. Our program used
them and apply it to every point in
the height matrix which in turn re-
solved that point’s height and dis-
play it accordingly. Other methods
include using the Saint-Venant equa-
tions, which are modified versions
of the shallow water equations, and
work in a very similar way to the
Navier-Stokes equations.

4.3 Assumptions

To properly derive an equation that
we can properly translate into code
for our program, there are several as-
sumptions that we had to make first.
The first was that the the only thing
used is a height map to represent the
surface of the water. This means that
although we did not concern ourselves
with any water underneath the sur-
face, that also means that the motion
on the surface is severely limited. It
cannot splash; for that, we would’ve
had to use a particle system. The

second assumption was that we could
ignore the vertical velocity of the wa-
ter points. The third and final as-
sumption was that any given point
represents a column of water under
it, and that the horizontal velocity
at any point is constant through that
column.

4.4 Discussion

In order to properly implement the
equation into the program, after we
have made our assumptions and inte-
grating and discretizing the Shallow
Water equations, we are left with a
form of them as shown:

a T
E+ 9 (ud) = 0
dt dx

Figure 1: Version of the Shallow Water equations using Newton’s Second
Law and the Law of Conservation of Mass|5].

d°s d,_,+d d +d

— =g L X s —s J+g XE2—2L|s —5
arz g Z(M]z (.'c X 1] g Z(M]Z (.nl .'c]

Figure 2: After calculations and integration, we are left with a single equation
that solves for the vertical acceleration of a single point on the height field[5].
Uses the formula for velocity of a shallow water wave, which is the square
root of G times depth.

Ah(n) = 2h(n-1) = h(n-2)

Figure 3: This is the final equation that will be used to calculate the height. It
uses the matrix below and the heights of the two previous points to calculate
height at any point.[4]

A= . .
€3 fus

fas €S foa

\ faz €ur)

Figure 4: Matrix A. Uses modified versions of the simplified Shallow Water
equations above.[4]

However, the simplified version of
the Shallow Water equations has one
great flaw: it does not take into ac-
count the bottom of the water ver-
sus the height. This means that it
is possible for the height to be be-
low the floor of the body of fluid,
causing the depth to be negative.
This also means that the equation
does not conserve volume correctly.
This means that I need to check that
that doesn’t happen manually. With
a simple method, if the volume of
the body doesn’t stay the same at
any time, the extra positive or nega-
tive volume will be distributed across
the body. This way, it will always
stay the same mass. I also need to,
at the beginning of the loop, cre-
ate the Matrix A, and use that and
the 3rd equation shown to solve for
all of the heights. This is the cor-
rect method, which I was not using
at the beginning. Since switching
to this method, I found I could to-
tally disregard acceleration and ve-
locity, meaning I would not need to
store them in the array of every point
along with the heights. However, I
needed to store two different arrays
of heights, one being the current and
one being the previous, because to
solve for the heights, we needed the
heights of each point at the two previ-
ous timesteps. This entire process is
only to create a wave in one direction.

To create motion in two directions,
we must merely repeat this process
for the X and Z axes, iterating over
every row and column calculating the
new heights.

5 Results

In the final version of the project, the
main goal was achieved while some
of the less important plans fell by
the wayside. The program is able to
display and update the height field
in 3 dimensions, and every point’s
height is able to be changed. Us-
ing the mouse, the user is able to
zoom, pan, and rotate the model
through the implementation of the
GLTZPR library. The project is split
into two programs, one that creates
one directional waves and another
that creates two directional waves.
Both programs automatically propa-
gate waves, and do not allow for the
user to create new ones. The waves
that are created look very close to
real fluids, however, due to the fact
that the the methods that conserve
volume were not implemented cor-
rectly, the fluid slowly loses volume
until all of the points end up lower
than they started. Despite this, the
model works fairly well and serves its
purpose of looking good while main-
taning a level of realistic motion.

Figure 5: Unidirectional wave created by the final version of the project.

Figure 6: Bidirectional wave created by the final version of the project.

References

1]

N. Foster and R. Fedkiw, ”Prac-
tical Animation of Liquids”,
Proceedings of the 28th Annual
Conference on Computer Graph-

ics and Interactive Techniques,
pp. 23-30, August 2001.

Janghee Kim, Deukhyun Cha,

Byungjoon Chang, Bonki
Koo, Insung Ihm, ”Practi-
cal animation of turbulent
splashing water”, Proceed-
ings of the 2006 ACM SIG-
GRAPH/Eurographics sympo-

sium on Computer animation,
September 02-04, 2006, Vienna,
Austria.

Bryan M. Klingner, Bryan E.
Feldman, Nuttapong Chentanez,
James F. O’Brien, "Fluid ani-
mation with dynamic meshes”,
ACM SIGGRAPH 2006 Pa-
pers, July 30-August 03, 2006,
Boston, Massachusetts.

Michael Kass, Gavin Miller,
"Rapid, stable fluid dynamics for
computer graphics”, Proceed-
ings of the 17th annual confer-
ence on Computer graphics and
interactive techniques, pp.49-57,

10

September 1990, Dallas,
USA.

TX,

Jeff Lander, "Research on the
Rhine: Reflections on Water
Simulation”, Game Developer,
pp- 1-4, January 2000.

G.X. Wu, Q.A. Ma, R. Eatock
Taylor, ”Numerical simulation
of sloshing waves in a 3D
tank based on a finite element
method”, Appl. Ocean Res. 20,
pp. 337-355, 1998.

Joe Stam, ”Stable Fluids”, ,pp.
121-128, 1999.

Carcione, Jose M. and Poletto,
Flavio and Gei, Davide, ”3-D
Wave simulation in anelastic me-
dia using the Kelvin-Voigt con-
stitutive equation”, J. Comput.
Phys., pp. 282-297, 2004.

Magnus Wrenninge and Doug
Roble, "Fluid simulation inter-
action techniques, Proceedings
of the SIGGRAPH 2003 confer-
ence on Sketches & applications:
in conjunction with the 30th
annual conference on Computer
graphics and interactive tech-
niques, July 27-31, 2003, San
Diego, California.

