
Simulating Fluid Motion in a Shallow
Context in 3-Dimensions

Jacob Dominy
Computer Systems Lab 2009-2010

Abstract
As computer graphics become more advanced and
realistic, it becomes necessary to learn how to recreate
real-life events in a virtual environment. The events
that have proved most problematic in this regard are
those that occur in nature. In this project I investigated
techniques to automate simple, shallow fluid motion
found in everyday life.

Background
 Recreation of the motion of fluids has proved to be an
enduring conundrum for graphic designers. This is
because all computer graphics are based on the
combined use of many 3-Dimensional objects. This
makes modeling solids very simple, but very difficult
when it comes to fluids. A deep understanding of
physics is also required to recreate the motion of fluids
as they are dictated by a large set of rules in nature.
Because there are countless different situations and
conditions that occur in nature, encompassing all of
these possibilities has made it hard to code realistic
fluid motion. Several different methods to approaching
this problem have been researched in this field.

Discussion
There are several different methods of representing
fluids in a simulated environment. A body of water can
be simulated using a particle system or a 3-
Dimensional grid of cells. The program then will
calculate the forces and velocities in all directions on
every single particle or cell. However, for our purposes,
this will most likely prove too complicated and too hard
on computer resources. A more practical method,
especially in a shallow body environment, is to use a
hight field. This is a 2-D matrix that stores the heights
of each point and then graphed. As for actual physics,
the most common method for determining velocities of
fluids is the Navier-Stokes equation, but this project
used a variation on the shallow water equations for
added simplicity.

Results and Conclusions
The expected results of this project were the successful application
of concepts of fluid dynamics to computer graphics in the context of
a small, standing, shallow body of water. With these methods
applied, the expected output was realistic ripples and waves on the
surface of the fluid. In it's final version, the program correctly
displays the height field in 3D, and is able to rotate, scale, and pan
with light effects. The shallow water equations is coded correctly,
and the implementation and application are very nearly correct.
The program, when run, is capable of displaying a wave moving in
either one or two directions across the height field. However,
because the implementation is not quite perfect, the body of water
slowly loses volume from it's starting point, but this does not affect
the overall quality of the look of the wave generated.

Fig. 1. An example program
using a height field to simulate
water ripples. Program uses a
modified sine equation to create
waves that look similar to fluids,
but does not actually recreate
its motion.
http://www.youtube.com/watch?
v=TcVrEZ0i_u0

Fig. 2. Screenshots of a
simulated ball splashing into
water. Simulation uses a
combination of a voxel field
and and a particle system to
create the splashing effect for
a more realistic experience.
(N. Foster and R. Fedkiw,
"Practical Animation of
Liquids")

Fig. 3. A simplification and discretization of the Navier-Stokes
equation that evaluates for the vertical acceleration of any
point on the height field.

This is not all we need however. This equation is not linear
because the depth “d” depends on the height “h”, and this
inevitably causes problems. Therefore, we need to create a
linear matrix with similar equations.

Figs. 3/4. Shows the final useful
equation and the tridiagonal
linear matrix. When solved, the
equation produces a matrix
containing the heights of every
point in the one-directional
wave. (Michael Kass, Gavin
Miller, "Rapid, stable fluid
dynamics for computer
graphics")

This is the process for a wave in one direction. To create a two
directional wave, I merely repeated the process for both the X and Y
axes.

	Slide 1

