Analysis of the RSA Encryption Algorithm

Betty Huang
June 16, 2010

Abstract

The RSA encryption algorithm is commonly used in public secu-
rity due to the asymmetric nature of the cipher. The procedure is
deceptively simple, though; given two random (large) prime numbers
p and g, of which n = pq, and message m, the encrypted text is de-
fined as ¢ = me (mod n). E is some number that is coprime to the
totient(n). The public key (n, e), however, makes it difficult for the
user to find the private key (n, d), due to the fact that given only n,
it is extremely difficult to find the prime factors p and q. The fastest
methods currently have O(sqrt(n)) complexity, but require expensive
resources and technology (Kaliski). The aim of this paper is to analyze
various factorization methods.

1 Introduction

My project aims to research and compare the various factorization methods
available, including a proposal towards improving the current methods al-
ready available. There is an industry demand towards improving the speed
of the RSA cryptosystem, as it is widely used by agencies that require se-
cure transfer of information between clientele and administrators. Since the
security of the algorithm is depended on the mathematical difficulty and
computationally "hard” problem of factoring, it is important to recognize
potential exploits of factorization.

1.1 Background

The field of public key cryptography is rapidly advancing, due to the growth
of internet connections around the world. There is a great demand for proper

distribution of public keys and ability to secure data across greater networks.
Prior to the 1970s, encryption and decryption was accomplished through the
same key. However, the decryption (or private) key should ideally be acces-
sible only to the regulators and not the general public. Diffie and Hellman,
two researchers from Stanford University, proposed the idea of using different
keys for encryption and decryption, which allowed for private access to the
decryption key (Hellman). Therein lays the heart of asymmetric key ciphers,
leading to a revolutionary overhaul of securing data online. No longer did
suppliers have to worry about allowing unauthorized access to the decryption
key, which increased overall security of sensitive data transfers on the web.
The RSA encryption algorithm was developed by Ronald Rivest, Adi Shamir,
and Leonard Adleman at MIT, and falls into the class of asymmetric ciphers
known as "trap door ciphers.” Simply put, trap door, or one way ciphers
allow for simple encryption, but decryption remains in the realm of nearly
impossible without the decryption key. The fundamental building blocks of
RSA remain in number theory, modular exponentiation, integer factorization
("expensive”), and prime generation. At the core, RSA relies on two facts:

1. multiplying numbers together is easy, and
2. factoring numbers is hard (Kaliski).

Current methods put factorization in square root order, which means that
factoring 100000 requires approximately 367 time steps. With numbers that
exceed 100 digits, the square root of such a number is around 50 digits, which
means that that there are 10% possibilities. If a computer were able to calcu-
late one million factorizations in a second, then over the span of the universe,
it could try 10?* different combinations total (Davis 03). Thus, to find the
factors of a number with 100 digits, one computer would take over the span
of the universe. Since the beginning of human existence, mankind has wres-
tled with the issue of factorization. The first prominent breakthrough was
accredited to Fermat, who coined the ”difference of two squares” algorithm.
First, a smallest perfect square is found that is greater than the number in
question, and then checking to see if the difference between the number and
the square is another perfect square. If it is not, then find the next smallest
perfect square that is greater than the first perfect square. This method ex-
ploits the difference of squares property (a>—b* = (a—b)(a+0b)) , and is better
than brute force. There have been other methods since developed, including
Lenstra’s elliptic curve technique, and Pollard’s probabilistic algorithm. The

fastest process currently is an expansion of Fermat’s technique, known as
the Quadratic Sieve (QS). There are several permutations to the Quadratic
Sieve, including processes that lend itself to parallelized interpretations.

For a long period of time, factoring numbers has been a purely academic
problem with no practical applications. It was known to most humans and
mathematicians that factoring large numbers, however, is a difficult and ex-
pensive problem due to the nature of finding factors. It was not until Rivest,
Shamir, and Adleman came along and developed the RSA encryption algo-
rithm that factoring numbers gave way to a practical use. The core of the
RSA is the simplicity in which numbers can be multiplied, but the difficulty
in factoring numbers (Davis). Essentially, the RSA function chooses two ran-
dom prime numbers p and q, and then multiplies these two numbers together
(to guarantee that there are two factors, and only two factors).

1.2 Scope of Study
The field of study will be in encryption and cryptanalysis in C.

2 Review of Literature

Rivest’s original paper on the RC5 algorithm has been helpful in my research
and understanding of the encryption mechanism in order to approach it from
an angle of attack. Since I wanted to experience the thought process on
breaking a cipher, I did not review other, widely available literature on RC5
cryptanalysis. After that, I studied two papers that detailed two different
methods in breaking the RC5. The first paper, titled ”On Differential and
Linear Cryptanalysis of the RC5 Encryption Algorithm,” offered the first
approach taken towards attacking the RC5. Authors Burton S. Kaliski Jr.
and Yiqun Lisa Yin focused efforts on recovering the expanded S table, rather
than the input (thus, their results are key-length independent). Figure two
explains the algorithm procedure that Yin et al. used. Refer to Appendix A
for the version that I used for RC5.

In conclusion Yin et al suggest using a 12 round implementation of the
RC5, which helps prevent against most common differential /linear cryptanal-
ysis attacks. However, this paper had been published in 1995, and I expect
that recent innovations would make it possible to use attacks against the
RC5, so I continued looking for more recent papers. The most recent update

was in 1998, also authored by Yin and Kaliski, which further expanded on
their research.
There are several methods in dealing with block ciphers:

1. The exhaustive search - this is the most intuitive and brute-force type
of attack. Simply put, the attacker finds one plaintext/ciphertext com-
bination, and then essentially runs through all possible combinations
until a match is found.

2. Statistical searches - the attacker analyzes patterns and matches be-
tween plaintext /ciphertext combinations

3. Differential Cryptanalysis - the attacker choosese two plaintexts, P1
and P2, with altercations (”difference”) P’ between the two. After P1
and P2 are encrypted, their ciphertexts C1 and C2 are compared, and
the difference between the two is identified as C’. The goal of differential
cryptanalysis is to find a a pair of (P’, C’) that occur with more than
normal probaility.

4. Linear Cryptanalysis - the idea here is to find items (plaintexts, ci-

phertexts, etc.) that occur over several iterations with probaility !=
1/2 (Kaliski).

This research has led me since to Rivest’s RSA Encryption Algorithm;
The first paper I encountered was published by B. Kaliski, which described
the mathematical properties that functioned as the backbone of the RSA
encryption algorithm. He details several mathematical properties that are
mentioned in my literature review of the paper. In summary, the core aspect
of the security of the RSA is that factorization is difficult, or expensive. In
terms of time spent/resources required, factoring large numbers has gained
notoriety in the mathematic community since the advent of these usage.
The RSA exploits this inherent property in order to increase security, but is
considerably slower than other competing asymmetric ciphers (ex. DES).

3 Development

For the first part of the quarter, I refined the code implementation of the RSA
cryptosystem in C and reading the mathematical concepts behind the code.

In addition, I read several papers outlining the core concepts and foundations
that the algorithm rests upon. When choosing large prime numbers, it’s often
expensive for computer systems to process 200+ digits, which increases the
difficulty (ie. memory and time spent) of the problem. Upon further exam-
ination, I found that the fastest method available was the Quadratic Sieve,
explained in Appendix B. The QS lends itself to parallel implementation,
and reigns as champion in terms of speed for factorization fewer than 110
digits. Numbers that exceed this bound are better approximated by General
Number Field Sieve (Gerver). As of now, I have tested code implementations
of several various prominent prime factorization techniques in order to de-
termine the fastest on several conditions. Although many authors (Gerver,
Pearson, Pomerance) agree that the QS is the fastest algorithm up to 110
digits, it is not as successful for "medium large” numbers.

Following the implementation of the RSA encryption algorithm, I focused
on computational techniques on factoring. The majority of the security that
follows from the RSA algorithm comes from the age-old problem of factor-
ing. There are various prime factorization methods available, and as time
passes, they become more sophisticated in nature and computational power.
Following the discussion of the significance of these factorization techniques,
I analyzed several algorithms that were within the computational confines of
an average processor.

The first algorithm is also the one that follows most intuitively for indi-
viduals that are presented with a number to factor, which is to divide every
number less than the number in question until prime factors are obtained.
This is known as trial division, and is often the method of choice for num-
bers that are less than 5 digits. For example, given the composite—which a
number that is divisible- 225 (a ?powerful number”), we recognize that 5
divides evenly into 225, leaving us with a remainder of 45, which is divisible
by 5, leaving 9. From there, we see that the prime factors of 225 are 3, 3,
5, and 5. The unique property of prime factorization is that there is only
one such combination of factors that form a particular composite (the RSA
algorithm exploits this property by multiplying two prime numbers together,
which means that two prime numbers p and ¢ are the only two possible
factors of the composite n).The trial division algorithm is relatively simple,
which is why it is the most popular approach for most people that do math
on a daily basis. (a*> —b? = (a — b)(a + b)) Expanding on this property, the
Fermat theorem is less intuitive, but exploits a property with numbers and
their squares. If a number n can be expressed into (a*—0?) , thus the number

can be factored into (a+b)(a-b). Coding this algorithm was fairly simple; I
would attempt to find an a such that a®> — N = b2, This algorithm is only
efficient for certain numbers, such as 8051 = (8100 - 49).

The pseudocode:

Given n = ab, find a and b. to do this, we try to represent n as the difference
of two perfect squares. for alli > 0, x = sqrt(n) + i. calculate 2% — nfor all i
until 22 — n = y?, a perfect square. Now, 22 — n = y?, thus

n=a?—y?

n=(x-y)x+y)

a=xX-y

b=x+y

A worked example, as demonstrated in Pomerance’s paper, is the integer
8051. The simplest way would be to try as many numbers as possible until
factors were found. Fermat’s solution is much more elegant; instead, the
number is re-expressed as 8100 - 49.

8100 = 902

49 = 7?

so the factors are 90 and 7.

I considered the possibility of improving on these algorithms. For trial
division, there are obvious improvements that could be made in terms of
the numbers checked. For example, if the numbers 2 and 3 were checked,
there would be no point in checking 6, 12, 18, 24, etc... and this could
dramatically reduce the number of cycles that brute force would require.
Another improvement could be checking only prime numbers, but that might
be difficult because that would require the user to either a) have a list of the
prime numbers up to an arbitrary number available, and b) find all the prime
numbers, which would be an impossible problem. The Fermat theorem has
obvious improvements as well, in the case of an 7bad? number to factor.
Having an exit case after a certain number of tries would avoid the possibility
of running into a case that is less effective than brute force itself.

4 Results

The second part of my development during this quarter was the implementa-
tion and testing of the RSA algorithm in C. The code is included in Appendix
B, and the results are as follows: see Figure 1.

3.5

2.5

1.5

0.5

Trial Division TD (|mproved) Fermat Fermat (|mproved)

Figure 1: comparison of the various methods of integer factorization.

Appendix A. A Simple Example of the RSA
Encryption Algorithm

The algorithm:

¢ = M¢(mod n)

M = c*(mod n)

Public key: (n, e)

Private key: (n, d)

Where C represents the ciphertext, and M represents the plaintext message
in numeric format.

Choose two large primes (100 digits or more) p and q. For simplicity, small
primes will be chosen so the math is easier to follow: p = 11 and q = 7.
Multiply p*q, and set N equal to the result. This N is part of the public key.
N=p*q=11*7=77

Choose a number e that is coprime (shares no common factors) with
k=(p-1)(q-1).

k=(p - 1)(q - 1) = (10)(6) = 60.

We choose e to be 13, which is also part of the public key. This information
is sufficient to encode the message.

For the decryption, one must find d such that ed = 1 (mod k). Since the
number k is not released to the public, it is extremely difficult for someone
to find d. Since we do know what k is, we find that:

13d = 1 (mod 60), or the inverse modular function

d =37

Suppose a friend passes the message m = 53 (note that 1 < m < N). In order
to encrypt the message,

C' = mf(mod N)

C = 533(mod 77)

The subsequent decryption:
M = ¢*(mod N)

M =53

Appendix B. Comparison table of various in-
teger factorization methods

1.55E+45 Time Success Resultant

Brute Force 2.6 no 2 * 3 * 607 * 7669 * 55330323753934231552903581534602334349
Brent (p-1) 0.748 yes 2 * 3 * 607 * 7669 * 20947 * 413551 * 51083807 *
370770947 * 337227786373
Pollard 3.099 no 2 * 3 * 4655083 * 55330323753934231552903581534602334349
Williams (p+1) 0.483 yes 2 * 3 * 607 * 7669 * 20947 * 413551 * 51083807 *
370770947 * 337227786373
Lenstra (Elliptic Curve) 1.044 yes 2 * 3 * 607 * 7669 * 20947 * 413551 *
51083807 * 370770947 * 337227786373

Appendix C. Code

#include <stdio.h>
#include <math.h>

int phi M,n,e,d,C,FLAG,m,D;

S T W N

int ged(int a,int b) //greatest common divisor

{

int c;
if (a<b)

c = a;
a = b;
b = c;

}

while (1)

¢ = a%b;
if (c==0)
return b;
a = b;
b = c;
}
}

// int privatekey(int wval)
// A

// int d;

[/ d= e

}

int totient (int X) // calculates how many numbers between 1 and
N — 1 which are relatively prime to

N.

{

int i;
phi = 1;
for (i =2 ; i <X ; ++i)
if (ged(i, X) = 1)
++phi;
return phi;
int encrypt(int message)

{

int result;
result=message;
int x;

for (x=0;x<e;x++)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

result=result*message;

}

result=result%m;
return result;

}

int decrypt(int ciphertext)

{

int x;

int plainres=plainres;

for (x=0;x<d;x++)

{
plainres=plainresx*ciphertext;

}

plainres=plainres%n;

return plainres;

References

[1] Landquist, E., The quadratic sieve factoring algorithm. Math, 448, 276.

[2] H. W. Lenstra Jr, Factoring integers with elliptic curves, Annals of math-
ematics 126, no. 3 (1987): 649-673.

[3] D. Pearson, A parallel implementation of RSA, Cornell University (July
1996).

[4] Montgomery, P.L., 1994. A survey of modern integer factorization algo-
rithms. CWI Quarterly, 7(4), 3377365.

[5] C. Pomerance, Analysis and comparison of some integer factoring al-
gorithms, Mathematics Centrum Computational Methods in Number
Theory, Pt. 1 p 89-139(SEE N 84-17990 08-67) (1982).

10

o1
92
33
54
55
56
o7
98
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
(0]

[6] C. Pomerance, 2008. A tale of two sieves. Biscuits of Number Theory,
85.

[7] Factoring large numbers with a quadratic sieve, Mathematics of Com-
putation 41, no.163 (1983): 287-294.

[8] T. Denny et al., On the factorization of RSA-120, in Advances in Cryp-
tology(CRYPTO)93, 166-174.

[9] Parallel implementation of the RSA public-key cryptosystem, Interna-
tional Journal of Computer Mathematics 48, no. 3 (1993): 153-155.

[10] Kaliski, The Mathematics of the RSA Public-Key Cryptosystem, RSA
Laboratories. April 9 (2006).

11

