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Abstract
The RSA encryption algorithm is commonly 
used in public security due to the asymmetric 
nature of the cipher. The procedure is 
deceptively simple, though; given two random 
(large) prime numbers p and q, of which n = pq, 
and message m, the encrypted text is defined 
as c = me (mod n). E is some number that is 
coprime to the totient(n). The public key (n, e), 
however, makes it difficult for the user to find 
the private key (n, d), due to the fact that given 
only n, it is extremely difficult to find the prime 
factors p and q. The fastest methods currently 
have O(sqrt(n)) complexity, but require 
expensive resources and technology (Kaliski). 
The aim of this paper is to analyze the 
factorization of n through various popular 
methods.  

Introduction
The RSA algorithm is heavily based on mathematical concepts, utilizing Euler's 
totient function and prime factorization, and the modulo function. In general, there is 
a public key function defined as (n, e) and a private key function defined as (n, d). 
The algorithm statement is given c = m^e % n, where c is the ciphertext and m is the 
integer representation of the original message, m = c^d % n, for some d. First, note 
that the totient function returns the number of integers that are coprime to the input, 
is used to calculate d. Note that with any  prime number p, the totient function 
returns p-1:

p = 5
totient(p) = 4

Since we are looking for n=pq, where p and q are prime numbers, the mathematical  
multiplication property allows us to calculate totient(n).
p = 5, q = 11
n = pq = 5*11 =55
totient(n) = (p-1)(q-1) = (5-1)(11-1) = 4(10) = 40

Now, we are interested in any positive number e that is coprime to totient(n). In this 
case, assume e = 3. Now, we want to find d such that de = 1 (mod totient (n)). Since 
we are guaranteed that a modular multiplicative inverse exists by specifying e such 
that e is coprime to totient n, we can find d by calculating the modular multiplicative 
inverse of e modulo totient(n):
3d = 1 (mod 40)
1 (mod 40) = 41, 81, 81+ 40 ...for simplicity, we use 81, because it divides evenly 
into 3
3d = 81
D = 9

Now, in this example, our public key is (55, 3), and our private key is (55, 9). Now, 
assume message m = 32 (1 < m < n). Then c= 32^3 % 55 = 43

We could find m by using the decrypt function (m = c^d % n): 43^9  % 55.

Discussion
Following the implementation of the RSA encryption algorithm, I 
focused on computational techniques on factoring. The majority of the 
security that follows from the RSA algorithm comes from the age-old 
problem of factoring. There are various prime factorization methods 
available, and as time passes, they become more sophisticated in 
nature and computational power. Following the discussion of the 
significance of these factorization techniques, I analyzed several 
algorithms that were within the computational confines of an average 
processor. 

Trial Division
Given the composite--which a number that is divisible-- 225 (a 
“powerful number), we recognize that 5 divides evenly into 225, 
leaving us with a remainder of 45, which is divisible by 5, leaving 9. 
From there, we see that the prime factors of 225 are 3, 3, 5, and 5. 
The unique property of prime factorization is that there is only one 
such combination of factors that form a particular composite (the RSA 
algorithm exploits this property by multiplying two prime numbers 
together, which means that two prime numbers p and q are the only 
two possible factors of the composite n).

Fermat's Theorem
If a number n can be expressed into a^2 – b^2, thus the number can 
be factored into (a+b)(a-b). Coding this algorithm was fairly simple; I 
would attempt to find an a such that a^2 -N = b^2. This algorithm is 
only efficient for certain numbers, such as 8051 (8100 – 49). 

given n = ab, find a and b.  to do this, we try to represent n as  
the difference of two perfect squares.  for all i > 0, x = sqrt(n) + i.

 calculate x^2 - n for all i until x^2 - n = y^2, a perfect square. 
 x^2 - n = y^2,  thus
 n = x^2 - y^2
 n = (x - y)(x + y)
 a = x - y
 b = x + y

Pollard's Rho Algorithm
In 1975, John M. Pollard proposed a very efficient Monte Carlo 
algorithm for factoring, now known as Pollard’s ρ method. The 
algorithm is substantially faster than trial division for finding a small 
non-trivial factor of a large integer N , if such
 exists.

The basic component of Pollard’s ρ algorithm is a sequence of 
pseudo-random
 integers constructed in the following way:

                          x0 = random(0, N   － 1)

                        xi = f (xi－ 1 ) (mod N ), i = 1, 2, ∙ ∙ ∙

where f is a polynomial with integer coefficients, eg. in most practical 
implementations of the algorithm f (x) = x2 + α, α = 0, － 2.

Results
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