
Analysis of the RSA Encryption Algorithm

Betty Huang

Computer Systems Lab 2009-2010

Abstract
The RSA encryption algorithm is commonly
used in public security due to the asymmetric
nature of the cipher. The procedure is
deceptively simple, though; given two random
(large) prime numbers p and q, of which n = pq,
and message m, the encrypted text is defined
as c = me (mod n). E is some number that is
coprime to the totient(n). The public key (n, e),
however, makes it difficult for the user to find
the private key (n, d), due to the fact that given
only n, it is extremely difficult to find the prime
factors p and q. The fastest methods currently
have O(sqrt(n)) complexity, but require
expensive resources and technology (Kaliski).
The aim of this paper is to analyze the
factorization of n through various popular
methods.

Introduction
The RSA algorithm is heavily based on mathematical concepts, utilizing Euler's
totient function and prime factorization, and the modulo function. In general, there is
a public key function defined as (n, e) and a private key function defined as (n, d).
The algorithm statement is given c = m^e % n, where c is the ciphertext and m is the
integer representation of the original message, m = c^d % n, for some d. First, note
that the totient function returns the number of integers that are coprime to the input,
is used to calculate d. Note that with any prime number p, the totient function
returns p-1:

p = 5
totient(p) = 4

Since we are looking for n=pq, where p and q are prime numbers, the mathematical
multiplication property allows us to calculate totient(n).
p = 5, q = 11
n = pq = 5*11 =55
totient(n) = (p-1)(q-1) = (5-1)(11-1) = 4(10) = 40

Now, we are interested in any positive number e that is coprime to totient(n). In this
case, assume e = 3. Now, we want to find d such that de = 1 (mod totient (n)). Since
we are guaranteed that a modular multiplicative inverse exists by specifying e such
that e is coprime to totient n, we can find d by calculating the modular multiplicative
inverse of e modulo totient(n):
3d = 1 (mod 40)
1 (mod 40) = 41, 81, 81+ 40 ...for simplicity, we use 81, because it divides evenly
into 3
3d = 81
D = 9

Now, in this example, our public key is (55, 3), and our private key is (55, 9). Now,
assume message m = 32 (1 < m < n). Then c= 32^3 % 55 = 43

We could find m by using the decrypt function (m = c^d % n): 43^9 % 55.

Discussion
Following the implementation of the RSA encryption algorithm, I
focused on computational techniques on factoring. The majority of the
security that follows from the RSA algorithm comes from the age-old
problem of factoring. There are various prime factorization methods
available, and as time passes, they become more sophisticated in
nature and computational power. Following the discussion of the
significance of these factorization techniques, I analyzed several
algorithms that were within the computational confines of an average
processor.

Trial Division
Given the composite--which a number that is divisible-- 225 (a
“powerful number), we recognize that 5 divides evenly into 225,
leaving us with a remainder of 45, which is divisible by 5, leaving 9.
From there, we see that the prime factors of 225 are 3, 3, 5, and 5.
The unique property of prime factorization is that there is only one
such combination of factors that form a particular composite (the RSA
algorithm exploits this property by multiplying two prime numbers
together, which means that two prime numbers p and q are the only
two possible factors of the composite n).

Fermat's Theorem
If a number n can be expressed into a^2 – b^2, thus the number can
be factored into (a+b)(a-b). Coding this algorithm was fairly simple; I
would attempt to find an a such that a^2 -N = b^2. This algorithm is
only efficient for certain numbers, such as 8051 (8100 – 49).

given n = ab, find a and b. to do this, we try to represent n as
the difference of two perfect squares. for all i > 0, x = sqrt(n) + i.

 calculate x^2 - n for all i until x^2 - n = y^2, a perfect square.
 x^2 - n = y^2, thus
 n = x^2 - y^2
 n = (x - y)(x + y)
 a = x - y
 b = x + y

Pollard's Rho Algorithm
In 1975, John M. Pollard proposed a very efficient Monte Carlo
algorithm for factoring, now known as Pollard’s ρ method. The
algorithm is substantially faster than trial division for finding a small
non-trivial factor of a large integer N , if such
 exists.

The basic component of Pollard’s ρ algorithm is a sequence of
pseudo-random
 integers constructed in the following way:

 x0 = random(0, N － 1)

 xi = f (xi－ 1) (mod N), i = 1, 2, ∙ ∙ ∙

where f is a polynomial with integer coefficients, eg. in most practical
implementations of the algorithm f (x) = x2 + α, α = 0, － 2.

Results

	Slide 1

