
Agent-based modeling of urban society and
interactions

Andrew Imm
TJHSST Computer Systems Research Lab

2009-2010

June 16, 2010

Abstract
Current systems used to model the spread of disease treat popu-

lations as single entities, and neglect the actions of individuals. By
developing an agent-based simulation focused upon the accurate mod-
eling of social interactions seen in an urban environment, a testing
bed that resembles a modern city arises. This testing environment
— with its accurate modeling of day-to-day interactions within a city
— provides a far better system to use when developing epidemiology
simulations. Using an implementation of goal-oriented agents who are
guided by a number of variables that make up their unique and indi-
vidualistic ”personalities,” this program attempts to create this type
of urban model and use the system to run a number of epidemiological
studies. Once the virtual society is established within its routines, and
a network of social relationships has developed within the city’s inhab-
itants, the simulation will reach an autonomous running state where
it can develop and grow on its own. At this point, various scenarios
can be implemented to draw conclusions about human populations in
urban environments. In one such scenario, the introduction of a sim-
ulated influenza virus will help determine how an urban population
reacts to such an infection, and how the disease is likely to spread
through the city.

Keywords: Agent-based, urban simulation, social networks, ur-
ban society, interactions, disease, epidemiology, modeling, simulation
tools

1

1 Introduction

By taking into account the needs and motivations of people, a realistic sim-
ulation of an urban society can be created. This project builds a system
of agents who navigate their city according to individual schedules, interact
with others to gather information and satisfy a need for socialization, and ul-
timately make their decisions through a complex system of algorithms that
take into account the various aspects of an agent’s personality. Although
guided by their own rules, the actions which the agents take in response to
their environment and each other lead to an emergent behavior in the over-
all society. Such a system is individual-driven, because agent actions are
not globally controlled by a single method, but rather by the preferences
and traits of individual agents. The system is also designed to be extremely
extensible and modifiable — effectively, it can be used to test the effect of
any representable stimulus upon a bustling urban environment. With the
simulation completed, this project will look into the implementation of epi-
demiology studies in this environment. These studies will follow the virtual
citizens of the simulation after a virus is introduced into the city. The agents’
interactions with each other provide a vector for viral transfer, providing a
chance to study how the virus spreads along social networks. Finally, the ef-
fectiveness of various quarantine methods can be analyzed in order to create
a contingency plan that can be implemented in the real world.

2 Background

In the field of epidemiology, most models used to predict the outcomes of
plagues and epidemics are math-based. They treat the entire population of a
region or nation as a single entity. This take on the problem of studying the
spread of disease has one major downfall — it assumes that all members of
the population have similar behaviors. If any stratification is done to divide
the population into subgroups, these are generally only related to susceptibil-
ity to the disease in the study. In other words, the unique characteristics of
individuals are lost. An agent-based model, while more processor-intensive
than a strict mathematical model, brings into play this individuality. How-
ever, past models that took an agent-based approach were very simplistic.
For instance, viral modeling has been popular in the TJHSST Computer Sys-
tems Research Lab for years, but nearly every project has involved agents

2

moving randomly within a closed, featureless environment. Effectively, these
simulations resembled nothing more than an experiment of specialized bacte-
ria moving around in a petri dish — hardly an experiment that can be used
to make generalizations or conclusions about a human population. For such
conclusions, the agents in the model must act as humans do; this necessity
provides the reason for developing an accurate simulation of an urban society.

To fill this gap in epidemiology research, one of the main goals of this
project was to develop a testing environment where urban scenarios can be
implemented, and virtual populations can be experimented upon. The simu-
lation environment provides a series of tools which can be used by scientists
and researchers to customize and create their own simulations; the simu-
lation system can be modified and manipulated as the user sees fit, from
the drawing of maps to the creation of agent schedules and custom interac-
tion methods. An epidemiologist studying viral spread can write interaction
methods that cause a virus to spread from one agent to another, while a
sociologist studying the proliferation of rumors can explore them through
methods that transmit knowledge between agents. Items as intangible as
thoughts, and as tangible as money can be transferred from one agent to
another with the ability to customize the simulation at will.

Beyond the ability for customization, the in-depth qualities of realism in
this simulation tool will provide an effective testing environment for epidemi-
ology studies. Because the simulation is designed with a focus on individual
interactions, the program works well for simulating the spread of disease from
one individual to another. Using agent-based models to analyze the spread
of disease is something that has been explored before by a few scientists,
but the fact is that it is not a mainstream method of epidemiology modeling.
Dr. Stephen Eubank from Virginia Polytechnic Institute is one of the leaders
in the field of agent-based epidemiology modeling, and his projects explore
the spread of many diseases in a variety of environments. For instance, his
”Modelling Disease Outbreaks in Realistic Urban Social Networks” takes on a
similar problem as my project does — exploring the spread of disease through
a social network. However, his program does not take into account all of the
environmental aspects of simulating a city that my project does. With the
extra features found in my simulation model, I hope to establish a platform
that can accurately assess the quality of various quarantine methods when
dealing with infectious diseases.

3

3 Development

The development of this project has been divided into three different group-
ings of code. The first piece of code represents the actual simulation system;
it is this code that is used when the simulation is finally run. The second
piece of code is composed of various tools and helper programs that are used
to expedite the process of project development. The third and final piece
of code includes any tests that are run in order to analyze the stability and
efficiency of the simulation. Although only the first group of programs is
used in the final simulation, the other groups ensure that the final product
is developed as quickly and accurately as possible.

3.1 Simulation

The simulation makes up the majority of the code written for this project.
At run time, it is provided with the location of a simulation file, which tells
the program where to look for each component of the simulation. The data
needed to run the model is divided into various files: a file that defines the
world, a file that defines agents and their schedules, and a file which contains
the code for custom interaction methods. Once all of these program files have
been located, the simulation loads the map file in order to properly construct
the city environment. With the empty world now loaded into memory, the
program then loads an agent file which tells the computer how to configure
the virtual city’s populous. Each agent is assigned a name, a schedule, and
a ”personality” — a set of preferences that dictate how likely the agent is
to perform various actions. Once the world and its inhabitants have been
built, the program initializes its internal clock to 12:00 midnight on day 0.
As the model runs, the virtual clock updates, and eventually agents wake up.
As time progresses in the simulation, the agents go about the daily routines
dictated in their schedules, navigating the city using the simulation’s path-
finding algorithm. Using built-in methods, they can be ordered to travel to
different buildings or areas of the map, and are able to find their own space
to inhabit in each building they visit. Inherently, the agents encounter others
throughout the day, and begin to remember other agents whom they often
see. These memories of acquaintances are the beginning of the agent’s social
network: a stored list of friends and colleagues that allows the agent to keep
track of people it has already met. The agent’s list of acquaintances also keeps

4

track of how well the agent knows others; this data is used by the agent to
decide whom to interact with. As the simulation ages, the virtual city begins
to resemble its real counterpart. Agents become established in their routines,
and have dependable networks of friends that keep them socially active. At
this point, a range of tests can begin in the simulation. Manipulation or
addition of variables — such as a virus — at this stage ensures that the
results resemble a real-world reaction as best as possible.
The simulation is initialized with a map that is formatted in the following
way:

[width]
[he ight]
b u i l d i n g s :
[Bui ld ing]=[x1] , [y1] , [x2] , [y2]
map :
0000000000000 . . .
0000111111111 . . .
0000111111111 . . .
.
.

The first lines contain [width] and [height], which are the width and height
(respectively) of the map in terms of grid squares. The next line contains
the header ”buildings:”, which denotes that building definitions will follow.
These building definitions are structured as seen, where [Building] is the
internal name of the building that is used to refer to the specific area of
the map, and [x1],[y1] and [x2],[y2] are the coordinates for the top-left and
bottom-right corners (respectively of the building area. After all building
definitions have been listed, the next line contains the header ”map:”, which
denotes that the actual map data will follow. From that point, each line of
the file represents a row on the map, where each individual character is a
number representing the terrain type at that data point.
The agents are then loaded using a file that is formatted in the following
way:

[Agent Name]
([x] , [y])
{
−[t ime] [l o c a t i o n]
.

5

.
}
[c h a r a c t e r i s t i c]=[va lue]
. .
. .
.
.
.

The first line contains the agent’s name, which is enclosed by square brackets
(”[” and ”]”). The next line contains the agent’s initialization coordinates,
where [x] is the x-coordinate and [y] is the y-coordinate of the point on the
map where the agent begins its life. The next few lines, between the ”{”
and the ”}” contain the agent’s schedule. Each line of the schedule contains
the [time] at which the agent needs to navigate to the [location]. The final
lines after the schedule contain various characteristics that can be assigned
to the agent, where [characteristic] is simply the name of the characteristic,
and [value] is a floating-point number from 0.0 to 1.0.
Agents navigate the map according to their schedule, stepping through it to
check whether they should be moving to a new location with each time incre-
ment. Their navigation method is a standard A* search based on the grid of
the map, where horizontal and vertical movements of one square constitute
a cost of 10, and diagonal movements of one square constitute a cost of 14
(10 times

√
2). Since agents are constantly moving, they are not treated

as obstacles by the navigation method. However, multiple agents cannot oc-
cupy the same square on the map, so agents who are directly neighboring the
currently-navigating agents are temporarily seen as obstacles. This behavior
allows many agents to attempt to reach a single point in an effective realistic
way: as the crowd gathers around the goal point, agents fill in the gaps in
the crowd to form an approximately circle-shaped mass of agents around the
point.
When agents find themselves neighboring each other, they always take no-
tice of each other. They also record how often they have encountered certain
individuals, so as to remember acquaintances and how well they know each
other. If they see another agent whom they know well, they are given the
opportunity to interact with that agent. Such interaction can involve a vari-
ety of actions, depending on the structure and application of the simulation.
Agents might wish to share specialized knowledge with each other, or they

6

might unknowingly spread a virus through interaction. The specifics of these
interactions, such as how they’re actually carried out with program variables,
are all defined in one of the files imported at the beginning of the simula-
tion. These interactions are enabled by agent preferences; preferences with
names that match the names of methods specify how likely an agent is to per-
form those actions when it encounters another agent. Through these custom
methods and characteristics, the shape of interactions within the simulation
evolves.

3.2 Additional Programs

This project requires the creation of other programs that speed up the pro-
cess of development. For instance, the simulation uses complex files to store
maps, and the easiest way to create these maps is with a secondary program.
The map builder allows the user to create maps with a graphical interface
that displays the map as it will appear when the simulation is run. The
program can also be used to create buildings on the map, and such build-
ings are used by the simulation in order to determine where to send agents.
The map builder also features a variety of other features that can be useful
for development, including distance calculations and map-printing abilities.
These programs are external from the final simulation program, but they
are necessary for producing the components of any simulation, and therefore
are a part of the suite of tools which have been produced to develop urban
simulation models.

3.3 Tests

In order to improve the efficiency of the program and determine the optimal
scale of the simulation, various tests have been used to analyze the program’s
internal algorithms. These tests imported methods from the simulation and
ran them on large sets of data to determine their practical limits. One algo-
rithm that was very important to test was the path-finding method. This is
one of the most frequently-called methods in the simulation, and it needed
to be tested to determine how many times it could be run per program cycle
before a noticeable lag occurred. Testing it again and again with large sets
of data will helped to determine this number. It was also through these tests

7

that serious flaws were found in the path-finding algorithm that prevented
agents from effectively reaching their goals and navigating efficiently. Agents
eventually ended up in traffic jams that slowed city movement to a standstill,
ruining the simulation. Analysis from these tests eventually determined that
agents needed to avoid treating each other as obstacles unless such catego-
rization were absolutely necessary. In later development stages, tests were
used to determine inefficient segments of code. To improve memory and
processor use, variables were reused to avoid duplication of efforts and to
conserve the amount of memory consumed by the program. Tests enabled
the program to run at top speed, and led to improvements in every stage of
the program’s main loop.

4 Discussion

The simulation, now completed, is able to load a simulation file which dic-
tates where all of the variable pieces of the simulation may be found. The
specifications laid out in the map file give a variety of details as to world
terrain and the placement of named ”buildings,” which are used to refer to
contiguous areas of the map. The program creates the agents as they are
specified within the agent file, each with its own name, schedule, and per-
sonality attributes. When the simulation begins, the program keeps track of
virtual time, and uses this clock to time and control the actions of agents.
As it is, the agents within the simulation can continue to navigate the map
indefinitely, moving to the various destinations indicated in their schedule.
At they follow their daily schedules, they have the opportunity to interact
with neighboring agents, potentially transmitting items through this inter-
action. Tests have been performed which involved the transfer of knowledge
through this medium, and it has been used in larger experiments to examine
the spread of disease. The other large piece of code is the map builder, which
creates maps with a variety of useful features that are used in the simulation.
The map builder features a graphical user interface that makes creation of
the map much easier than editing a text file by hand. Dialogs for creating
buildings on the map, as well as defining new, custom types of terrain allow
for a feature-filled map creation environment.

8

Figure 1: Agents navigating in a large map environment

9

Figure 2: The map builder user interface

10

5 Tests and Results

Once the simulation system was developed, its ability to run a number of
useful simulations was tested. Starting as any third-party user would, a sim-
ulation was begun with the creation of a map and a set of agents with certain
properties. For each of the tests, special interaction methods were written
which defined how the simulation ran. In the knowledge test, agents were
told to share knowledge with each other. In more complicated tests (such
as the one examining the spread of a virus), agents were given a variety of
interaction choices. Each of these methods was written, and the final simula-
tion file was created, including its pointers to each of the various component
files. The processes involved in two of the major simulations implemented
here are listed below. It should be noted that the purpose of this project was
to create a system that could be used for simulations, and these tests served
to tests the viability of the project in this context.

5.1 The Knowledge-Transfer Test

This first test examined the transfer of knowledge between agents, such as
in the modeling of the spread of a rumor. Knowledge is shared easily, and
is not lost after it has been obtained. As such, the entire population should
eventually grow to obtain the knowledge — the question is, by what point
in time will they do so? This simulation gave agents only one interaction
method: the transfer of specific knowledge, which in this case was the location
of a secret building. Agents were all told in their schedules to navigate to this
building at noon, but initially no agents knew where the building was. One
agent was initialized with the knowledge of the secret building, and was given
the ability to share it with everyone else in the world. Each day, more and
more agents would travel to the building at noon, because more and more
of them were learning where the building was located. It took a while for
agents with nocturnal schedules to gain that knowledge, but after 100 runs
of the simulation, it was shown that it only took around 4-5 days for every
agent to obtain the knowledge. The model ran successfully, and without any
modifications to the original program. Every customized aspect was coded
using the user-created external files that were imported at runtime.

11

5.2 The Viral-Spread Test

This later model explored how agents behave in an urban society where there
is a virus in the population. Taking advantage of custom actions and interac-
tions, this simulation gave agents many options when it came to encountering
others. Each agent had a unique probability of performing each action, and
the many actions served to both spread the virus and improve relationships
between individuals. For instance, talking would raise the level of familiar-
ity a little bit, while telling a joke would increase the level much further.
This test explored how two different quarantine methods worked: one where
agents relied on their own sense of self-preservation to avoid contact with
others (and possible contraction of the virus). The other method placed
a curfew on the city, limiting travel hours to certain times of day. It was
found that the two methods were equally effective: it took approximately
22-23 days for every agent in the world to contract the virus in both scenar-
ios. Again, the simulation program demonstrated its ability to be used for a
variety of modeling purposes.

6 Conclusions

This project initially began as an examination into the spread of a virus
through the implementation of a realistic urban simulation environment. As
it progressed though, the focus changed to the creation of such a system that
was dynamic and modular enough to be used for a variety of diverse modeling
purposes. It was recognized that a system that can be easily changed and
manipulated holds far more value in the field of agent-based modeling and
simulation than a single-purpose program ever would. Through the year, the
program was developed and expanded, making improvements in efficiency,
realism, and the ability to customize simulations in a variety of ways. The
final project was put to the test, creating two different models and exploring
how they behaved; in the end, it was found that the simulation environment
worked well for its newfound purpose, and was an effective way to implement
models with widely differing properties.

12

Appendix A. Code Samples

This code contains the definition of the Agent class, which includes all of the
complex pathfinding code.

def i n i t (s e l f , id , x , y , s i z e , canv ,map , a t t r) :
print ’ Creat ing Agent ’ , id
s e l f . id = id
s e l f . x = x
s e l f . y = y
s e l f . s i z e = s i z e
s e l f . canvas = canv
s e l f .map = map
s e l f . a t t r i b s = a t t r
s e l f . s t e p l i s t = []
s e l f . d i sp = canv . c r e a t e o v a l (x∗ s i z e , y∗ s i z e , (x+1)∗ s i z e , (y+1)∗ s i z e , width=0, f i l l = ’#000000 ’)
s e l f . waitcount = 0
s e l f . waitmax = 3
s e l f . tempchange = {}

def s tep (s e l f) :
#pr in t s e l f . id
#raw input ()
i f s e l f . s t e p l i s t :

s s = s e l f . s t e p l i s t . pop ()
i f s e l f .map [s s] == None :

c , d = s s . s p l i t (” . ”)
s e l f . goto (i n t (c) , i n t (d))

else :
s e l f . s t e p l i s t . append (s s)
s e l f . waitcount += 1
i f s e l f . waitcount >= s e l f . waitmax :

s e l f . waitcount = 0
i f l en (s e l f . s t e p l i s t) > 1 :

nbl = s e l f . getmoves (s e l f . x , s e l f . y)
for nbi in nbl :

nb = nbi [0]
i f s e l f .map [nb] != None :

s e l f . tempchange [nb] = s e l f .map [nb]
s e l f .map [nb] = −1
#pr in t nb , ’ i s INVALID ’

#pr in t s e l f . s t e p l i s t
destx , desty = s e l f . s t e p l i s t [0] . s p l i t (” . ”)
#pr in t s e l f . id , ’ i s RENAVIGATING. Des t ina t ion i s ’ , des tx , de s ty
s e l f . nav igate (i n t (destx) , i n t (desty))

else :
s e l f . s t e p l i s t = []

for tnb in s e l f . tempchange :
s e l f .map [tnb] = s e l f . tempchange [tnb]

s e l f . tempchange = {}
#pr in t s e l f . id , ’ i s DONE renav i ga t ing ’

def goto (s e l f , c , d) : #phy s i c a l l y moves the agent to the s p e c i f i e d coord ina te s
z = s t r (s e l f . x)+” . ”+s t r (s e l f . y)
s e l f . x = c
s e l f . y = d
s e l f .map [s t r (c)+” . ”+s t r (d)] = s e l f .map [z]

13

s e l f .map [z] = None
s e l f . canvas . coords (s e l f . disp , c∗ s e l f . s i z e , d∗ s e l f . s i z e , (c+1)∗ s e l f . s i z e , (d+1)∗ s e l f . s i z e)

def navbui ld ing (s e l f , bui ldingname) : #nav i ga t e s to a named bu i l d i n g
i f buildingname in po s i t i o n s :

p l i s t = []
for p in po s i t i o n s [bui ldingname] : p l i s t . append (p)
while l en (p l i s t) > 0 :

r i = in t (random ()∗ l en (p l i s t))
key s t r = s t r (p l i s t [r i] [0])+ ” . ”+s t r (p l i s t [r i] [1])
i f s e l f .map [keys t r] == None :

a

def nav igate (s e l f , c , d) : #nav i ga t e s to the s p e c i f i e d coord ina te s us ing A∗
i f s e l f . x == c and s e l f . y == d :

return
s e l f . s t e p l i s t = []
s e l f . s t e p l i s t = s e l f . f indpath (s e l f . x , s e l f . y , c , d)
#pr in t s e l f . s t e p l i s t
i f s e l f . s t e p l i s t :

s e l f . s t e p l i s t . pop ()

def getmoves (s e l f , a , b) :
i f not (s t r (a)+” . ”+s t r (b) in s e l f .map) :

return []
move l i s t = []
for xx in range (−1 ,2) :

for yy in range (−1 ,2) :
i f not (xx == 0 and yy == 0) :

key s t r = s t r (a+xx)+” . ”+s t r (b+yy)
i f keys t r in s e l f .map and s e l f .map [keys t r] != −1:

f = 10
i f xx != 0 and yy != 0 :

f = 14
move l i s t . append ([keystr , f])

return move l i s t

def f indpath (s e l f , a , b , c , d) :
open = {}
c l o s ed = {}
mystr = s t r (a)+” . ”+s t r (b)
c l o s ed [mystr] = [”START” , 0]
moves = s e l f . getmoves (a , b)
min = 999999999
mindex = ”−1”
i f not moves : return []
for m in moves :

j , k = m[0] . s p l i t (” . ”)
j = in t (j)
k = in t (k)
open [m[0]] = [mystr ,m[1]] #[parent , f−va lue] (we can c a l c u l a t e h at any time from f)
md = s e l f . mdist (j , k , c , d)
i f m[1]+md < min :

mindex = m[0]
min = m[1]+md

return s e l f . pathhe lper (mindex , c , d , open , c l o s ed)

14

def mdist (s e l f , a , b , c , d) :
return (math . f abs (a−c)+math . f abs (b−d))∗10

def pathhe lper (s e l f , mystr , c , d , open , c l o s ed) :
a , b = mystr . s p l i t (” . ”) # current square
a = in t (a)
b = in t (b)
c l o s ed [mystr] = open [mystr]
del (open [mystr])
i f a == c and b == d : return s e l f . ex t rac tpath (mystr , c l o s ed)
gg = c l o s ed [mystr] [1]
mm = s e l f . getmoves (a , b)
for m in mm:

i f not (m[0] in c l o s ed) :
i f not (m[0] in open) :

open [m[0]] = [mystr , gg+m[1]]
e l i f gg+m[1] < open [m[0]] [1] :

open [m[0]] = [mystr , gg+m[1]]
min = 999999999
mindex = ”−1”
i f not open : return []
for m in open :

j , k = m. s p l i t (” . ”)
j = in t (j)
k = in t (k)
md = s e l f . mdist (j , k , c , d)
i f open [m] [1]+md < min :

mindex = m
min = open [m] [1]+md

return s e l f . pathhe lper (mindex , c , d , open , c l o s ed)

def ext rac tpath (s e l f , mystr , c l o s ed) :
s t r = mystr
s t ep s = []
while s t r != ”START” :

s t ep s . append (s t r)
s t r = c l o s ed [s t r] [0]

return s t ep s

This code contains the map- and agent-loading code used by the simulation
to read those system components from external files.
def l oadagents (path) :

global l a s t a g en t
print ’ l oad ing agent from f i l e : ’ , path
f i l e = open (path) . read () . s p l i t (’ \n ’)
i n f o = []
k = 0
while k < l en (f i l e) :

print k , ’− ’ , f i l e [k]
i f f i l e [k] == ’ ’ :

print ’CREATE AGENT’ , l a s t a g en t
genagent (in fo , l a s t a g en t)
l a s t a g en t += 1
i n f o = []

else :
i n f o . append (f i l e [k])

k += 1

15

def genagent (in fo , count) :
i f l en (i n f o) == 0 or i n f o [0] [0] != ’ [’ :

return
name = in f o [0] [1 : − 1]
c = i n f o [1] [1 : − 1] . s p l i t (’ , ’)
coords = [i n t (c [0]) , i n t (c [1])]
a t t r i b s = {}
k = 2
while k < l en (i n f o) :

l i n e = i n f o [k] . s p l i t (’= ’)
a t t r i b s [l i n e [0] . s t r i p ()] = f l o a t ((l i n e [1] . s t r i p ()))
k += 1

newagent = Agent (count , coords [0] , coords [1] , g r i d s i z e , canvas ,map , a t t r i b s)
keys t r = c [0]+ ’ . ’+c [1]
agents . append (newagent)
map [keys t r] = newagent

def loadmap (f i l ename) :
global w, h
global time
print ’ l oad ing map : ’ , f i l ename
f i l e = open (f i l ename) . read () . s p l i t (’ \n ’)
data = []
w = in t (f i l e [0])
h = in t (f i l e [1])
canvas . c on f i g (width=g r i d s i z e ∗w, he ight=g r i d s i z e ∗h+24)
k = 2
while k < l en (f i l e) and f i l e [k] . lower () != ’ bu i l d i n g s : ’ :

k+=1
i f k >= len (f i l e) : return
k += 1
while k < l en (f i l e) and f i l e [k] . lower () != ’map : ’ :

try :
print f i l e [k]
a = f i l e [k] . s p l i t (’= ’)
bdefn = a [1] . s p l i t (’ , ’)
bu i l d i n g s [a [0]] = []
for x in bdefn :

bu i l d i n g s [a [0]] . append (i n t (x))
except :

print ’ Fa i l ed to read bu i l d i ng . . . ’
k += 1

print bu i l d i n g s
k += 1
l = 0
while k < l en (f i l e) :

j = 0
for x in f i l e [k] :

data . append (i n t (x))
i f i n t (x) != 0 :

keys t r = s t r (j)+ ’ . ’+s t r (l)
map [keys t r] = None
i f i n t (x) == 2 :

for bd in bu i l d i n g s :
i f wi th i n r e c t ang l e (j , l , bu i l d i n g s [bd]) :

i f bd in po s i t i o n s : p o s i t i o n s [bd] . append ((j , l))

16

else : p o s i t i o n s [bd] = [(j , l)]
break

canvas . c r e a t e r e c t a n g l e (j ∗ g r i d s i z e , (l)∗ g r i d s i z e , (j +1)∗ g r i d s i z e , (l +1)∗ g r i d s i z e , width=1, f i l l =c o l o r s [i n t (x)])
j += 1

k += 1
l += 1

print po s i t i o n s
for bd in bu i l d i n g s :

b = bu i l d i n g s [bd]
canvas . c r e a t e r e c t a n g l e (b [0] ∗ g r i d s i z e , b [1] ∗ g r i d s i z e , (b [2]+1)∗ g r i d s i z e , (b [3]+1)∗ g r i d s i z e , width=3)

time = [0 , 0 , 0]

def wi th i n r e c t ang l e (x , y , r e c t) :
return (x >= re c t [0] and x <= re c t [2] and y >= re c t [1] and y <= re c t [3])

References
[1] Conte, R. Agent-Based Modeling for Understanding Social Intelligence. Proceedings of the National

Academy of Sciences of the United States of America, 2002.

[2] Eubank, Stephen. ”Modelling Disease Outbreaks in Realistic Urban Social Networks.” Nature 13 May
2004: 180-184.

[3] Jiang, Bin. Agent-Based Approach to Modelling Environmental and Urban Systems Within GIS Uni-
versity of Gavle, Sweden. Department of Geomatics.

[4] Kretzschmar, M, and Morris, M. Measures of concurrency in networks and the spread of infectious
disease. Math Biosci. 133(2): 165-95.

[5] Lester, Patrick. A* Pathfinding for Beginners. 18 Jul. 2005. Web. 3 Oct. 2009.
¡http://www.policyalmanac.org/games/aStarTutorial.htm¿.

[6] Makowski, Michael D. An Agent-Based Model of Mortality Shocks, Intergenerational Effects, and
Urban Crime. George Mason University, Department of Economics. 11 Nov 2005.

17

