Tagging and Statistically Translating Latin
Sentences
Andrew Runge

Computer Systems Lab 2009-2010

Abstract

In developing language translation software, an increasingly
common method is to tag words based on their role in the
sentence in order to determine where they should be in the
sentence, and then put them in that slot to create a basic,
sometimes awkward translation.This project works to create the
intitial work for developing a fully automated translation. The
program tags and translates the words in the sentence, allowing
them to then be organized into the proper order via statistical
translation methods.

Background

The biggest focus for language translation is to maintain the
original meaning of the sentence when it is translated. As such, it is
crucial not only to properly translate the words, but to maintain a
sensible word order in order to preserve the original meaning.
Machine learning methods, such as word tagging, allow the program
to rule out possibilities for what the possible functions of a given
word are. One such example used by McMahon and Smith was a
method for determining the role of words in a sentence based on
their context and similarities that they shared with other words.
Another experiment by Bowden discussed a method of tagging the
words for every possible set of characteristics they could have, and
then systematically narrowing down the possibilities until you can
more easily order the words based on their characteristics in Latin.
This is a similar method to the one that | am employing. After
identifying the words' roles in the sentence, then it is important to
put them in the correct order via statistical analysis. Chen et al.
demonstrate the effectiveness of statistical generation of sentence
structure with their project using n-grams to create possible
sentences. Another method of statistical analysis was demonstrated
in Alam et al. In which they generated sentences based on the
probability that two parts of speech could go together. Their program
suffered largely due to the tagging and original translation methods
that they used, but | intend to recreate the system they used for
sorting the words into the correct order. Finally, to test the veracity of
the program's translation, sometimes humans are integrated into the
translation process in order to correct any mistaken translations,
such as what was done in Barrachina et al. with Computer Assisted

Translation.
Secunda legio castra in Gallia habet, sed in Britanniam com imperatore festinabit.

STAGE I The output from the first stage is as follows:

Second] AD]-MomSingFem, VecSingF em AblSingFem NomPlurMeut,VocPlurMeut, AccPlurNeut]

legions MOUNFEm-NomSing, VocSing] camps] NOURK cut-MomPlur, VoePlur, AccPlur] infPREP-+ADB]-

CR-into[PREP-+Ace] Gau[NWOUNFem-MomSing, Vocsing, AblSing] he/shedt_have[VERB-

IrdSingPreslndAct] , but[CONI] in[PREP-+AR]-OR-into] PREP-+Acc] Britain] MOUNFem-AccSing|

with[FREP-+ABI] gemeralslh OUNMaze- AblSing] be'shelit will horey[VERBE-3ndSingFuInd Act] .
Figure 1: Sample of the method employed by Bowden to tag all words based on all
their possible sets of characteristics.

Tagging

With Latin, it is very easy to identify various parts of
speech. However, figuring out exactly what the translations are
for those parts of speech can still be tricky. The purpose of
tagging the words is to identify all the possibilities for how the
word could be translated. This way, when it comes down to
figuring out the exact meaning, there are a limited number of
possibilities for what each word could be.

INTEEMENSTRUUS => Latin: ADJ 1 1 POS interlunar, occuring
between two lunar months; (luna ~ => moon in the ~ period)
INTEEMINABILE => Latin: see INTEREMIMABILIS

INTEEMINLAEILIS => Latin: sese INTERMIMNABILIS
INTERMINABILITER => Latin: ADV POS unendingly

INTEEMIMATE => Latin: see INTEEMIMNLTIIS

INTEEMINATUM => Latin: see INTERMINATUS

INTEEMINATIIS => Latin: ADJT 1 1 PCS forbidden w, threats;
menaced, threatened

INTEEMISCEC => Latin: V 2 1 intermingle, mix, mix among, mingle
ITNTEEMISCERE =» Latin: sese INTERMISCED

INTEBEMISCUI => Latin: see INTEBEMISCED

INTEBEMISI =>» Latin: see INTEEMITTO

INTEEMISSIO => Latin: N 2 1 F intermission; pause
INTEEMISSICNIS => Latin: sees INTEEMISSIOC

INTEEMISSUS =»> Latin: see INTEERMITTO

INTEEMITTEEE = Latin: =e= INTEEMITTO

INTEEMITTO => Latin: ¥V 3 1 interrupt; omit; =stop; leave off
(temporarily); leave a gap

INTEEMIXTUS => Latin: see INTEEMISCEC

INTEEMUELLE => Latin: ses INTEEMURALIS

INTEEMURLTTS => Latin: =see INTEEMUBRLLIS

INTEENZ => Latin: see INTEENUS

INTEENECINA => Latin: see INTERMECINUS

INTEENECINUM => Latin: see INTERNECINUS

INTERNECINUS => Latin: ADJ 1 1 POS murdercus, deadly
INTERNECIC => Latin: N 32 1 F =laughter, massacre; extermination,

_ m - —

Figure 2: Screenshot of the primary dictionary..

Translation

In translation, the program takes each of the possible tags
and generates the translation for that set of characteristics. Once
each translation has been created, the program asks for input
from the user to determine whether the translation for the given
word is correct or not. If it is, it will be recorded into a translation
dictionary, so it can be easily accessed later. If it is not, it will
replace the translation with the new user input one. This way, if
the program does make some sort of mistake, then the user can
correct it so as to maximize the accuracy of the output translation.

e RESTART

e

What sentence would you like to translate?amabat
Time to make the dictionary is: 3.0060000419&6

Iz this translation correct: 1I53:He was loveing? no
Please enter correct translation now: he was loving
Time to tag sentence is: 4.32699380273

{'amabat': [["1I53', 'he was loving']l]}

Translation time is: 0.01999599809265

Total time taken is: 7.40799999237

et B RESTART

I

What sentence would vou like to translate?videbit
Time to make the dictionary is: 2.76995958053

I=z this translation correct: 2F53:He will see? yes
Time to tag sentence is: 3.00900006294

{'wvidebit': [['2F53', 'He will =ee']]}

ITranslation time is: 0.020599590E84473

Total time taken 1is: 5.35?ij31125d

Figure 3: Sample of code as it tags various forms of nouns and translates
these forms and corrects errors.

Additional Work

The program is able to tag and translate single words. The next
steps that should be taken for the improvement of this program would
be to eliminate those tags which are grammatically impossible, such
as a plural subject with a singular verb, as well as applying the
statistical analysis on the sentence in order to generate multiple
hypotheses for how the sentence could be translated.

	Slide 1

