COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Vincent DeVito Period: 2
2. Date of this version of your program: 1/22/10
3. Project title: Image Deblurring Techniques
4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

For commented code, see attached page.
The kinds of inputs my program will use are image files in either .gif format. The inputs will be the image to be blurred and the blur kernel (aka point spread function (PSF)). These images will be read in and then run through my FFT code that will convert them both to the frequency domain. Then they will be run through the convolution algorithm, which is just a simple point-multiplication of the two images (it is for this very reason why the images are converted to the frequency domain for convolution). Then that product array of pixel values is run through the IFFT (the inverse FFT), which converts those values back to the spatial domain. These values are then transformed using the logarithmic transform to fit the 0-255 range. Then they are stored and saved as the blurred output image. This is easily tested by the question: “Is the output image just a blurry version of the input image?” If so, then the program worked successfully. As for errors, the only errors my code should produce are invalid inputs, such as non .gifs or if the named filed does not exist in the directory. In these cases, the program will crash and alert the error via python.
5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

The goal for next quarter with my code is to finish the blurring algorithm and get started on the simple known-psf deblurring techniques. This will involve methods that reverse the convolution process, but as a whole the program will be almost identical to the blurring program, just deconvoluting instead of convoluting. Once I finish this, the goal will be to work on a program that estimates the blur kernel when it is not known.
Code:
import Image

from time import time

from math import e, pi, cos, sin, sqrt, log10, atan

def main():

 fname = raw_input("Picture to blur: ") #get picture filename

 fname2 = raw_input("PSF: ") #get psf filename

 im = Image.open(fname) #open then images

 im2 = Image.open(fname2)

 w, h = im.size #get their sizes (same size for both)

 pic = im.load() #load the pixel values of the picture

 trans1 = fft(pic, w, h) #fft the picture

 pic2 = im2.load() #load the pixel values of the psf

 trans2 = fft(pic2, w, h) #fft the psf

 blurfft = convolute(trans1, trans2, w, h) #convolute the two images

 final = ifft(blurfft, w, h) #ifft the convolution

 imfinal = Image.new("L", (w, h)) #output file

 pixels2 = imfinal.load() #load pixel matrix of output image

 for r in xrange(h):

 for c in xrange(w):

 pixels2[c, r] = int(final[r][c]) #take ifft pixels and store them in the output image

 imfinal.save(fname[:-4]+"_blur.gif") #save it

 print "Saved and done"

def fft(pixels, w, h):

 print "FFT"

 pix2intm = [] #interim array of pixel values

 j = 1J

 #DFT in one direction

 for k in xrange(w):

 if k == 0:

 print "First loop"

 temp = []

 for l in xrange(h):

 sum = 0+0j

 sumr = 0.0

 sumi = 0.0

 for a in xrange(w):

 theta = -2*pi*float((k-w/2)*a)/w

 sumr += pixels[a, l]*cos(theta)

 sumi += pixels[a, l]*sin(theta)

 sumr *= 1/float(w)

 sumi *= 1/float(w)

 temp.append((sumr, sumi))

 pix2intm.append(temp)

 pix2 = [] #final array of transformed values

 #DFT in the other direction

 for l in xrange(h):

 if l == 0:

 print "Second loop"

 temp2 = []

 for k in xrange(w):

 sum2 = 0+0j

 sumr2 = 0.0

 sumi2 = 0.0

 for b in xrange(h):

 theta = -2*pi*float((l-h/2)*b)/h

 calc = (cos(theta), sin(theta))

 sumr += calc[0]*pix2intm[k][b][0] - calc[1]*pix2intm[k][b][1]

 sumi += calc[0]*pix2intm[k][b][1] + calc[1]*pix2intm[k][b][0]

 sumr *= 1/float(h)

 sumi *= 1/float(h)

 temp2.append((sumr, sumi))

 pix2.append(temp2)

 return pix2 #return unaltered, conplex pixel values

def convolute(t1, t2, w, h):

 print "Convolute"

 conv = [] #output array

 for r in xrange(h):

 tempr = []

 for c in xrange(w):

 prod = (t1[r][c][0]*t2[r][c][0]-t1[r][c][1]*t2[r][c][1], t1[r][c][0]*t2[r][c][1]+t1[r][c][1]*t2[r][c][0])

 #point multiply the pixel values (complex numbers here)

 tempr.append(prod)

 conv.append(tempr)

 return conv #return the convoluted array of pixels

def ifft(t1, w, h):

 print "IFFT"

 pix2intm = [] #interim array of pixel values

 j = 1J

 #idft in one direction

 for k in xrange(w):

 if k == 0:

 print "First loop"

 temp = []

 for l in xrange(h):

 sum = 0+0j

 sumr = 0.0

 sumi = 0.0

 for a in xrange(w):

 theta = 2*pi*float((k)*a)/w

 calc = (cos(theta), sin(theta))

 sumr += calc[0]*t1[l][a][0] - calc[1]*t1[l][a][1]

 sumi += calc[0]*t1[l][a][1] + calc[1]*t1[l][a][0]

 sumr *= 1/float(w)

 sumi *= 1/float(w)

 temp.append((sumr, sumi))

 pix2intm.append(temp)

 pix2 = [] #final array of pixel values

 #idft in the other direction

 for l in xrange(h):

 if l == 0:

 print "Second loop"

 temp2 = []

 for k in xrange(w):

 sum2 = 0+0j

 sumr2 = 0.0

 sumi2 = 0.0

 for b in xrange(h):

 theta = 2*pi*float((l)*b)/h

 calc = (cos(theta), sin(theta))

 sumr += calc[0]*pix2intm[k][b][0] - calc[1]*pix2intm[k][b][1]

 sumi += calc[0]*pix2intm[k][b][1] + calc[1]*pix2intm[k][b][0]

 sumr *= 1/float(h)

 sumi *= 1/float(h)

 temp2.append((sumr**2 + sumi**2)**.5)

 #add the magnitude of the complex number to the array

 pix2.append(temp2)

 tempmax = []

 tempmin = []

 for row in xrange(h):

 tempmax.append(max(pix2[row]))

 tempmin.append(min(pix2[row]))

 maxval = max(tempmax)

 minval = min(tempmin)

 #find the max and the min values in the image

 print minval, maxval

 mult = (maxval/minval)**.5

 #create a multiplier

 minval *= mult

 maxval *= mult

 k = 255/log10(1+maxval)

 #calculate the constant for the logarithmic transform

 for r in xrange(h):

 for c in xrange(w):

 pix2[r][c] *= mult

 #use the multiplier

 pix2[r][c] = k*log10(1+pix2[r][c])

 #logarithmically transform the pixel value

 return pix2 #return the final array of values

if __name__ == "__main__":

 main()
Outputs:

So far I have only tested the FFT and IFFT components, making sure that the output picture matched the input picture almost identically.

Below is an example:

[image: image1.png])

 was run through the program and produced [image: image2.png])

 which is almost identical. That means that my FFT and IFFT portions worked for this image.
Review of Code:
Currently, my code is not working in its entirety. Specifically, my FFT and IFFT methods are not working consistently and predictably. In fact, they are acting quite strangely. For the above image, all of the pixel values were inverted, so I added a 255-pixelvalue statement to my code to correct this. I then got an output for my psf that looked like this:
[image: image3.png]

 ([image: image4.png]

 (border added)
Which means that this image was not originally inverted, but inverted by my added 255-pixelvalue line.

Additionally, this same code produced the following input/output pair:

[image: image5.png]

 ([image: image6.png]

Which clearly are neither inverted nor non-inverted, but just distorted and incorrect. My own question is how the exact same code produced these three different types of outputs. I hope the answer lies with the image format (.gif) and not with my code, since I have spent the last few months troubleshooting. I plan to start using .pgm images, since the pixel values can be opened like a text document and are stored in a rawer format, hopefully getting rid of any inconsistencies with the .gif format or more likely the imaging library I am using. This will be my first task during third quarter.
