Image Deblurring Techniques

TJHSST Senior Research Project Proposal
Computer Systems Lab 2009-2010

Vincent DeVito

January 29, 2010

Abstract

In the world of photography and machine vision, blurry images
can spell disaster. They can ruin an otherwise perfect photo or make
it impossible for a computer to recognize the image or certain com-
ponents of it for processing. The best way to counter this without
taking another, clearer picture is to utilize deconvolution techniques
to remove as much blur as possible. That is the design of this project.
My plan is to first design a program that takes an image, blurs it using
a known blur kernel, then deblurs it to reproduce the original image.
After that I will attempt to create a program to determine the blur
kernel of a naturally blurred image. I will use Python and a package
called Python Imaging Library that will allow me to utilize multiple
image formats. My success will be measured simply by how much the
output (deblurred) image matches the input (original) image.

Keywords: deblurring, deconvolution, image processing, noise re-
duction

1 Introduction and

Background

The goal of this project is to create a
program that can take an image in-
put that has been blurred (first ar-
tificially, and later hopefully by poor
image capture) and to employ image
deblurring techniques to restore the
image and create a sharp, more rec-
ognizable output image with as few
blur artifacts and noise as possible.

1.1 Previous Research

So far I have found a paper regarding
image deblurring and noise suppres-
sion called "Image Deblurring with
Blurred /Noisy Image Pairs” by Lu
Yuan, et al.? that I plan to utilize
in helping me understand the tech-
niques and algorithms that go into
reducing the noise of and deblurring
an image. In their research they used
a blurry image with proper intensity
and poor sharpness and paired it with
an identical picture with good sharp-
ness but poor intensity and riddled
with noise to create a sharp, correct
intensity output with few or no arti-
facts left in the output image.
Another paper! I have read dis-
cusses an algorithm that the group
of researchers discovered that allows
for a mostly accurate estimation of
the blur kernel, or the path/direction
of the blur from the original im-

age. Their algorithm takes four in-
puts: the blurry image, a section
of the image that has a good sam-
ple of blurring (in case the image is
not uniformly blurred), if the blur is
estimated to be more horizontal or
more vertical, and the estimated size
of the blue kernel. Given these in-
puts, their algorithm can sufficiently
estimate the blur kernel such that
the image, which was captured us-
ing poor technique with a standard,
off-the-shelf camera, is satisfactorily
deblurred with few artifacts after de-
convolution. Any artifacts that are
left can generally be removed by an
experienced photo editor.

1.2 Other Research

Through my own work I have ac-
crued a detailed understanding of ba-
sic and intermediate image processing
techniques and algorithms from vari-
ous online worksheets and lessons at
http://homepages.inf.ed.ac.uk/rbf/
HIPR2/wksheets.htm. I plan to
use these techniques to help me
code and understand the more com-
plex concepts behind image deblur-
ring and the intermediate steps in-
volved. For example, I have exten-
sively used the section referring to
the Fourier Transform, located here:
http://homepages.inf.ed.ac.uk /rbf/
HIPR2/fourier.htm.

2 Development

2.1 Project Design

[used the programming language
Python to write the code for this
project. I decided to use Python be-
cause of its simplicity and adaptabil-
ity. I also found a package online
called the Python Imaging Library
(PIL) that allows me to read in and
process images in almost any format
using Python with relative ease. This
enables me to use more compressed
image formats, such as .jpg and .gif,
instead of the larger uncompressed
formats such as .ppm and .pgm as
well as letting me process them much
more efficiently. However, through-
out my testing I continue to use both
.gifs and .pgms so that I can confirm
that accuracy of PIL as well as trou-
bleshoot my code with greater ease
and efficiency.

The first step in this project is to
create a program that can artificially
blur an input image using a known
and given blur kernel. This is accom-
plished by converting both images
to the frequency domain, using the
Fast Fourier Transform (FFT), doing

Blurry Input Image l_

a simple point multiplication of the
images, then converting them back to
the spatial domain using the Inverse
Fast Fourier Transform (IFFT).

The next step is to write the
deconvolution algorithm that, when
given an image and its known blur
kernel, can deblur the input image.
This is fairly straightforward and will
likely involve the reverse of the afore-
mentioned ”blurring” algorithm. Af-
ter this step, I can attempt to add a
noise reduction filter to remove any
excess noise in the image and further
sharpen and clarify the image.

The final step is to design a pro-
gram that can estimate the blur ker-
nel. This program will first be tested
on blurry images with known blur
kernels to make sure that the esti-
mated blur kernel is similar to the
actual blur kernl used. Then, after
deemed acceptable, this program will
estimate the blur kernel of a naturally
blurred image with an unknown blur
kernel, which can them be used to de-
blurring that image, hopefully to an
acceptable level. This last step is a
large one and currently under a lot of
research since blind deconvolution, as
it is known, is quite difficult.

s _’\ Deconvolution m# >
(Artificial or Natural) Blur Kernel Estimation - SR T Deblurred Output Image

Figure 1. A graphic representation of my program design.

2.2 Testing

My project’s success will be measured
by its ability to take an image (which
will most likely be artificially blurred)
and return it to its original, sharp
quality. I will test my projects adapa-
bility and thoroughness by running a
series of tests that will entail attempt-
ing to deblur images of different con-

tent, type, and contrast with varying
magnitudes of blur. This will test my
programs ability to repair images re-
gardless of content or magnitude of
blur distortion, although there will
obviously be an upper limit to the
amount of distortion that can plau-
sibly be removed. An example of a
successful run is illustrated below:

Figure 2. This is an example of a blurry image input, with a particularly
blurry section highlighted.?

Figure 3. This is the same section from figure 2, but with the blur
drastically reduced, due to deconvolution.!

2.3 Theory
2.3.1 Fourier Transform

The Fourier Transform is heavily in-
volved with image convultion and
devoncolution because it allows for
greater speed and simpler code. The
Fourier Transform converts values in
an array from the spatial domain to
the frequency domain using a sum
of complex numbers, as given by the

W4 . n
=724 5]
Foo = > Jme ¥
. n={
equation:
The 2-Dimensional Discrete Fourier
Transform (DFT) does this us-
ing a matrix or 2D array of
values and wuses a nested sum:
M-1N- My
FOogy) = 0. > Jm, f’l)? Hw
m=|:In=CI

The reason the FFT is so impor-
tant to image convolution and decon-

is then transformed to

Since the 2-Dimensional Discrete
Fourier Transform wuses a mnested
sum, it can be separated to cre-
ate two 1-Dimensional Fourier
Transforms in a row, first in one

direction (vertically or horizon-

tally), then in the other direction.

Pk b= Z fla,b) ey
a=(

Flk,l) = = Z P(k,b) e "N
E—D

This is known as the Fast Fourier
Transform (FFT) and runs signifi-
cantly faster than the DFT, since the
DFT has a runtime of O(n?) and the
FFT has a runtime of O(nlogsn). The
following is an example of a picture
being converted the spatial domain to
the frequency domain via the Fourier
Transform.

volution is that it takes long itera-
tive algorithms and turns them into

simple point arithmetic. For exam-
ple, image convolution becomes as
simple as taking the Fourier Trans-
form of the image and the blur
kernel (known as the Point Spread
Function (PSF) after transforma-
tion), transforming them to the fre-
quency domain and point multi-
plying the two images. Then the
two images can be converted back
to the spatial domain by the In-
verse Fourier Transform, given by

M-1N-1 R

Al i—tr —
L'}T‘\T‘ Flx.ye R
MN 353

fim,m) =

and the result will be a blurry (convo-
luted) image. To reverse ths process
and deconvolute the image, assum-
ing the blur kernel is known, is as
simple as point dividing the trans-
formed image by the PSF, instead of

I do not know why the errors are
not consistent, but I speculate that
the imaging library I'm using might
be to blame. To test this, I plan to
switch to using .pgm files, since they
are uncompressed and do not require
an imaging library to read in Python.

is output as &

multiplying.

3 Results

I have successfully transformed an
image and then inversely trasnformed
it to produce an almost identical out-
put image using my program. I have
not yet successfully blurred an image,
however.

3.1 Errors

My program has not been entirely
debugged and has some running er-
rors. These have manifested them-
selves during the transform and in-
verse transform. Some images are in-
verted in color and some images are
distorted or pixelated. For example:

3.2 Scope

The scope of this project is rather
narrow, but important. It pertains
only to blurry images, but this is a
rather large problem in the worlds
of image processing, photography,
and machine vision. In photogra-

phy, blurry images are undesirable
because they lack sharpness or clar-
ity and in machine vision, blurriness
can make an image indecipherable by
the computer or render certain pro-
cesses ineffective, such as edge de-
tection. Blind image deconvolution
is also a very large area of research,
specifically on the subject of estimat-
ing unknown blur kernels to increase
adaptability for deblurring programs
to deblur any image.

4 Conclusions

I have managed to transform and in-
versely transform an image using the
Fourier Transform with partial suc-
cess. These processes will be crucial
to performing image convolution and
deconvolution as the next step in my
project.

4.1 Future Work

There is a lot of room for future work
on this project since, at this point, I

References

only have the FFT and IFFT work-
ing with inconsistent success. The
first and most obvious area for im-
provement is to troubleshoot my FF'T
and IFFT code so that it is success-
ful and reliable. Then, the next step
is to blur an image and experiment
with different kinds of blur kernels.
From there comes the obvious step of
reversing the blur using that known
kernel and experimenting with data
loss and noise reduction on the out-
put images. The final area of research
for this project is the one that is most
applicable to the real world and also
the subject of much study in the com-
puter science community. This is the
area of blind deconvolution, which es-
timates the blur kernel from an image
in which it is not known and then de-
convolutes the image based on this es-
timate. Research is ongoing in trying
to find the most efficient and adaptive
method of estimating the blur kernel.

[1] Brayer, J. M. (n.d.). Introduction to the Fourier transform. In
Topics in human and computer vision. Retrieved from Univer-
sity of New Mexico Department of Computer Science website:
http://www.cs.unm.edu/ brayer/vision/fourier.html

[2] Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T.
(2006, July). Removing camera shake from a single photograph. ACM

Transactions on Graphics, 25(3), 787-794. doi:10.1145/1141911.1141956

[3] Fisher, R., Perkins, S., Walker, A., & Wolfart, E.
(2000, October). Hypermedia Image Processing Resource
(HIPR2) [lmage processing learning resource]. Retrieved from
http://homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm

[4] Smith, S. W. (1997). A closer look at image convolution. In The scientist
and engineer’s guide to digital signal processing (pp. 418-422). Retrieved
from http://www.dspguide.com/

[5] Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2007, July). Image deblur-
ring with blurred/noisy image pairs. ACM Transactions on Graphics,
26(3). doi:10.1145/1276377.1276379

