
Abstract
In the world of photography and machine vision,
blurry images can spell disaster. They can ruin an
otherwise perfect photo or make it impossible for a
computer to recognize the image or certain
components of it for processing. The best way to
counter this without taking another, clearer picture
is to utilize deconvolution techniques to remove as
much blur as possible. My plan is to first design a
program that takes an image, blurs it using a
known blur kernel, then deblurs it to reproduce the
original image. After that I will attempt to create a
program to determine the blur kernel of a naturally
blurred image.

Figure 1. A graphical representation of the layout of my project design

Background
In my research I have found various methods of
blind and non-blind image deconvolution. One
paper discussed comparing a blurry, correct
intensity image with a sharp, noisy image to
produce a proper, deblurred output image with few
artifacts. Another paper discussed an algorithm
they developed to estimate the blur kernel and use
that to deblur the image from just a single
photograph. Various deconvolution algorithms
already exist, and it is the other component, the blur
kernel, that requires further research. The more
accurately the blur kernel can be estimated, the
more accurate and clear the output image will be.

Figure 2. An
example of
deblurring

Methods
The convolution and deconvolution process heavily
rely upon the Fourier transform (Figures 3 & 4). The
2D Fourier transform converts images from the
spatial domain to the frequency domain with
complex values. This makes convolution and
deconvolution simple, since they are just a matter of
point multiplication or division, respectively, of the
transformed image's pixel values with the
transformed blur kernel's pixel values. From there,
the inverse Fourier Transform (Figure 5) converts
the convolution/deconvoluted image back to the
spatial domain.

Results
My results so far are limited and inconsistent. My
program to test transforming using the FFT and
IFFT produces inconsistent results, varying from
correct, to inverted colors, to distorted and
pixelated (Figure 6). The next step is to
troubleshoot this program and then move on to
convolution, then deconvolution, then the largest
part, which is blind blur kernel estimation.Figure 3. 2D Fourier

Transform

Figure 4. Separated Fast
Fourier Transform

Figure 5.2D Inverse Fourier
Transform

Figure 6.
Various output
combinations
of my current
FFT and IFFT
code.

Image Deblurring Techniques
Vincent DeVito

Computer Systems Lab
2009-2010

	Slide 1

