
Agent-Based Modeling of Urban Society and
Interactions

Andrew Imm
TJHSST Computer Systems Research Lab

Q2 2009-2010

January 22, 2010

Abstract

Current systems used to model the spread of
disease treat populations as single entities,
and neglect the actions of individuals. By
developing an agent-based simulation fo-
cused upon the accurate modeling of social
interactions seen in an urban environment,
a testing bed that resembles a modern city
arises. This testing bed — with its accurate
modeling of day-to-day interactions within a
city — provides a far better system to use
when developing epidemiology simulations.
Using an implementation of goal-oriented
agents who are guided by a number of
variables that make up their ”personality,”
this program attempts to create this urban
model and use the system to run a number
of epidemiological studies. Once the virtual
society is established within its routines
and a network of social relationships has
developed within the city’s inhabitants, the
simulation will reach an autonomous running

state, where it can develop on its own. At
this point, the introduction of a simulated
influenza virus will determine how an urban
population reacts to such an infection, and
how the disease is likely to spread through
the city. Various quarantine methods will
also be tested in order to measure their
effectiveness.

Keywords: Agent-based, urban simula-
tion, social networks, urban society, interac-
tions

1 Introduction

By taking into account the needs and moti-
vations of people, a realistic simulation of an
urban society can be created. This project
builds a system of agents who navigate their
city according to individual schedules, inter-
act with others to gather information and sat-
isfy a need for socialization, and ultimately
make their decisions through a complex sys-

1

tem of algorithms that take into account the
various aspects of an agent’s personality. The
system is also designed to be extensible —
effectively, it can be used to testff the ef-
fect of a stimulus upon a bustling urban en-
vironment. With the simulation completed,
this project will look into the implementation
of epidemiology studies in this environment.
These studies will follow the virtual citizens
of the simulation after a virus is introduced
into the city. The agents’ interactions with
each other provide a vector for viral transfer,
providing a chance to study how the virus
spreads along social networks. Finally, the
effectiveness of various quarantine methods
can be analysed in order to create a contin-
gency plan that can be implemented in the
real world.

2 Background

In the field of epidemiology, most models used
to predict the outcomes of plagues and epi-
demics are math-based. They treat the en-
tire population of a region or nation as a
single entity. This take on the problem of
studying the spread of disease has one major
downfall — it assumes that all members of
the population have similar behaviors. If any
stratification is done to divide the population
into subgroups, these are generally only re-
lated to succeptibility to the disease in the
study. In other words, the unique charac-
teristics of individuals are lost. An agent-
based model, while more processor-intensive
than a strict mathematical model, brings into
play this individuality. However, past models

that took an agent-based approach were very
simplistic. For instance, viral modeling has
been popular in the TJHSST Computer Sys-
tems Research Lab for years, but nearly every
project has involved agents moving randomly
within a closed, featureless environment. Ef-
fectively, these simulations resembled noth-
ing more than an experiment of specialized
bacteria moving around in a petri dish —
hardly an experiment that can be used to
make generalizations or conclusions about a
human population. For such conclusions, the
agents in the model must act as humans do;
this necessity provides the reason for devel-
oping an accurate simulation of an urban so-
ciety.

The in-depth qualities of this simulation
will provide an effective testing environment
for epidemiology studies. Because the simu-
lation is designed with a focus on individual
interactions, the program works well for sim-
ulating the spread of disease from one indi-
vidual to another. Using agent-based mod-
els to analyze the spread of disease is some-
thing that has been explored before by a few
scientists, but the fact is that it is not a
mainstream method of epidemiology model-
ing. Dr. Stephen Eubank from Virginia Poly-
technic Institute is one of the leaders in the
field of agent-based epidemiology modeling,
and his projects explore the spread of many
diseases in a variety of environments. For in-
stance, his ”Modelling Disease Outbreaks in
Realistic Urban Social Networks” takes on a
similar problem as my project does — ex-
ploring the spread of disease through a social
network. However, his program does not take
into account all of the aspects of simulating a

2

city that mine does. With the extra features
found in my simulation model, I hope to cre-
ate a platform that can accurately assess the
quality of various quarantine methods when
dealing with infectious diseases.

3 Development

The development of this project has been
divided into three different groupings of
code. The first piece of code represents the
actual simulation; it is this code that is
used when the simulation is finally run. The
second piece of code is composed of various
tools and helper programs that are used to
expedie the process of project development.
The third and final piece of code includes
any tests that are run in order to analyze
the stability and efficiency of the simulation.
Although only the first group of programs
is used in the final simulation, the other
groups ensure that the final product is de-
veloped as quickly and accurately as possible.

3.1 Simulation

The simulation makes up the majority of
the code written for this project. Initially,
it loads a map file that tells the simulation
how to construct the city. It then loads an
agent file which tells the program how to
configure the virtual city’s population. Each
agent is assigned a name, a schedule, and
a ”personality” — a set of preferences that
dictate how likely the agent is to perform
various actions. Once the world and its

inhabitants have been built, the program
initializes its internal clock to 12:00 midnight
on day 0. As the model runs, the virtual
clock updates, and eventually agents wake
up. As time progresses in the simulation, the
agents go about the daily routines dictated
in their schedules, navigating the city using
the simulation’s path-finding algorithm.
Using built-in methods, they can be ordered
to travel to different buildings or areas of
the map, and are able to find their own
space to inhabit in each building they visit.
Inherently, the agents encounter others
throughout the day, and begin to remember
other agents whom they often see. These
memories of acquaintances are the beginning
of the agent’s social network: a stored list of
friends and colleagues that allows the agent
to keep track of people it has already met.
The agent’s list of acquaintances also keeps
track of how well the agent knows others;
this data is used by the agent to decide
whom to interact with. As the simulation
ages, the virtual city begins to resemble its
real counterpart. Agents become established
in their routines, and have dependable
networks of friends that keep them socially
active. At this point, a range of tests can
begin in the simulation. Manipulation or
addition of variables — such as a virus — at
this stage ensures that the results resemble a
real-world reaction as best as possible.

3.2 Additional Programs

This project requires the creation of other
programs that speed up the process of devel-

3

opment. For instance, the simulation uses
complex files to store maps, and the easiest
way to create these maps is with a secondary
program. The map builder allows the user
to create maps with a graphical interface
that displays the map as it will appear when
the simulation is run. The program can also
be used to create buildings on the map, and
such buildings are used by the simulation
in order to determine where to send agents.
The map builder also features a variety
of other features that can be useful for
development, including distance calculations
and map-printing abilities. While programs
such as the map builder are not used in the
final simulation, the products they create
enable the experiments of this project, and
these programs are therefore crucial to the
completion of this project.

3.3 Tests

In order to improve the efficiency of the pro-
gram and determine the optimal scale of
the simulation, various tests will be used to
analyze the program’s internal algorithms.
These tests will import methods from the
simulation and run them on large sets of data
to determine their practical limits. One algo-
rithm that is very important to test is the
path-finding method. This is one of the most
frequently-called methods in the simulation,
and it needs to be tested to determine how
many times it can be run per program cy-
cle before a noticeable lag occurs. Testing it
again and again with large sets of data will
help to determine this number. These tests

are like the additional programs in that their
code does not appear in the final project. In-
stead, they are used to develop and refine the
simulation so that its final state is the opti-
mal version.

4

Figure 1: Agents navigating towards a green square in the center of the map

4 Discussion

Currently, the simulation is at a stage where it can load a map and a file full of agent
definitions. The simulation creates the agents as they are specified within the file, each with
its own name, schedule, and personality attributes. The simulation keeps track of virtual
time, and uses this clock to time and control the actions of agents. As it is, the agents
within the simulation can continue to navigate the map indefinitely, moving to the various
destinations indicated in their schedule. Although agents encounter each other during the
day, the ability to interact with each other has not yet been implemented. At this point,
there is still no data to be collected, since the simulation is not at a point where a virtual
virus can be introduced. The other large piece of code is the map builder, which currently
creates maps with far more features than those that are used in the simulation at this point.
The map builder features a graphical user interface that makes creation of the map much
easier than editing a text file by hand. Dialogs for creating buildings on the map, as well as
defining new types of terrain allow for a feature-filled map creation environment.

5

Figure 2: The map builder user interface

6

Appendix A. Code Samples

This code makes up the path-finding algorithm found in the Agent class.

Moves an agent d i r e c t l y to the g iven coord ina te s
def goto (s e l f , c , d) :

z = s t r (s e l f . x)+” . ”+s t r (s e l f . y)
s e l f . x = c
s e l f . y = d
s e l f .map [s t r (c)+” . ”+s t r (d)] = s e l f .map [z]
s e l f .map [z] = None
s e l f . canvas . coords (s e l f . disp , c∗ s e l f . s i z e , d∗ s e l f . s i z e , (c+1)∗ s e l f . s i z e , (d+1)∗ s e l f . s i z e)

#Te l l s the agent to beg in the path−f i n d in g process in order to reach (c , d)
def nav igate (s e l f , c , d) :

i f s e l f . x == c and s e l f . y == d :
return
s e l f . s t e p l i s t = []
s e l f . s t e p l i s t = s e l f . f indpath (s e l f . x , s e l f . y , c , d)
print s e l f . s t e p l i s t
i f s e l f . s t e p l i s t :

s e l f . s t e p l i s t . pop ()

#Returns a l i s t o f p o s s i b l e moves surrounding a g iven square on the map
def getmoves (s e l f , a , b) :

i f not (s t r (a)+” . ”+s t r (b) in s e l f .map) :
return []

move l i s t = []
for xx in range (−1 ,2) :

for yy in range (−1 ,2) :
i f not (xx == 0 and yy == 0) :

key s t r = s t r (a+xx)+” . ”+s t r (b+yy)
i f keys t r in s e l f .map and s e l f .map [keys t r] == None :

f = 10
i f xx != 0 and yy != 0 :

f = 14
move l i s t . append ([keystr , f])

return move l i s t

#Begins the A∗ Search used in path−f i n d in g
def f indpath (s e l f , a , b , c , d) :

open = {}
c l o s ed = {}
mystr = s t r (a)+” . ”+s t r (b)
c l o s ed [mystr] = [”START” , 0]
moves = s e l f . getmoves (a , b)
min = 999999999
mindex = ”−1”
i f not moves : return []
for m in moves :

j , k = m[0] . s p l i t (” . ”)
j = in t (j)
k = in t (k)
open [m[0]] = [mystr ,m[1]] #[parent , f−va lue] (we can c a l c u l a t e h at any time from f)
md = s e l f . mdist (j , k , c , d)
i f m[1]+md < min :

mindex = m[0]

7

min = m[1]+md
return s e l f . pathhe lper (mindex , c , d , open , c l o s ed)

def mdist (s e l f , a , b , c , d) :
return (math . f abs (a−c)+math . f abs (b−d))∗10

def pathhe lper (s e l f , mystr , c , d , open , c l o s ed) :
a , b = mystr . s p l i t (” . ”) # current square
a = in t (a)
b = in t (b)
c l o s ed [mystr] = open [mystr]
del (open [mystr])
i f a == c and b == d : return s e l f . ex t rac tpath (mystr , c l o s ed)
gg = c l o s ed [mystr] [1]
mm = s e l f . getmoves (a , b)
for m in mm:

i f not (m[0] in c l o s ed) :
i f not (m[0] in open) :

open [m[0]] = [mystr , gg+m[1]]
e l i f gg+m[1] < open [m[0]] [1] :

open [m[0]] = [mystr , gg+m[1]]
min = 999999999
mindex = ”−1”
i f not open : return []
for m in open :

j , k = m. s p l i t (” . ”)
j = in t (j)
k = in t (k)
md = s e l f . mdist (j , k , c , d)
i f open [m] [1]+md < min :

mindex = m
min = open [m] [1]+md

return s e l f . pathhe lper (mindex , c , d , open , c l o s ed)

def ext rac tpath (s e l f , mystr , c l o s ed) :
s t r = mystr
s t ep s = []
while s t r != ”START” :

s t ep s . append (s t r)
s t r = c l o s ed [s t r] [0]

return s t ep s

References
[1] Lester, Patrick. A* Pathfinding for Beginners. 18 Jul. 2005. Web. 3 Oct. 2009.

¡http://www.policyalmanac.org/games/aStarTutorial.htm¿.

[2] Eubank, Stephen. ”Modelling Disease Outbreaks in Realistic Urban Social Networks.” Nature 13 May 2004: 180-184.

8

