COMPUTER SYSTEMS RESEARCH
Code Writeup of your program, example report form 2009-2010

1. Your name: Andrew Runge, Period: 2

2. Date of this version of your program: 1/21/10

3. Project title: Machine Learning, Language Rules, and Statistical Strategies for Language Translation

4. Describe how your program runs as of this version. Include

-- files that may be needed

-- algorithms, specific procedures or methods you wrote

-- kinds of input your program uses

-- screenshots, what kinds of output does your program have

-- does your program handle errors, or does it crash on errors of input?

-- tests: summarize the basic analysis and testing of this version of your program

Currently, my program reads in Latin words or sentences and is able to “tag” each word with all the possible combinations of characteristics that it can have. My program uses human-entered input of Latin sentences. My program outputs the sentence with basic translations for each word as well as prints out a dictionary of possible tags that each word can have. Right now, my program is only able to tag nouns, though I plan to add support for verbs.

 My program is able to handle errors of input to some extent. If a word that is not in the dictionary is entered, my code will print out that the word is not found in the dictionary. However, I haven't decided whether to have the user re-enter their input, or just to ignore the part of the sentence that isn't Latin. As of now, my program will crash if the input is not correct, because even though it recognizes the word isn't part of the dictionary, it will crash later because it still is using the flawed input.

The basic testing for my code consists of me hand-checking it's work with the tagging stage of the program, as well as checking to make sure that the program is able to correctly retrieve the definitions of the words.

5. What do you expect to work on next quarter, in relation to the goal of your project for the year?

In the third quarter, my plan is to finish the tagging process for verbs and adjectives, as well as make allowances for things like conjunctions and interjections. This should take about a week or two to finish, as I am about 2/3 of the way done with this step already. The next step will be to begin the actual translational phase of the program. The first component of this is to be able to recognize the words by their stem, and subsequently come up with the correct translation for the word. Once that stage is complete, the second stage will be to assemble the words based on statistical analysis of part of speech pairings in an English corpus. I will analyze what pairs of parts of speech are likely to be seen together, or conversely what parts of speech are never paired together. Using this information, I can narrow down the hypotheses to find the ones that are most coherent in Latin.

#The initial goal for this program is to receive input and import the Latin dictionary

import nltk

import time

def read_input():

 sentence = raw_input("What sentence would you like to translate?")

 return sentence

def import_dictionary(fname): #Imports the dictionary from the text file

 dictionary = open(fname)

 temp = dictionary.read()

 dictionary.close()

 temp = temp.split('\n')[:-1]

 return temp

def itemize(defin): #Removes some extraneous information from each dictionary entry

 n = 1

 types = False

 defin = defin.split(' ')

 while n < len(defin):

 if n>=len(defin):

 break

 if defin[n] == "=>" or defin[n] == "Latin:":

 defin.remove(defin[n])

 elif defin[n].isupper() and n < len(defin)-1:

 if defin[n-1] == "see":

 defin[n-1] == "SEE"

 n+=1

 else:

 n+=1

 defin[0] = defin[0].lower()

 return defin

def makemeadictionary(word): #Creates the dictionary and sorts the information to be easy to access

 dictionary = import_dictionary("Latin dictionary.txt")

 n = 0

 while n<6:

 dictionary.remove(dictionary[0])

 n+=1

 latindict = {}

 for n in dictionary:

 temp = itemize(n)

 q = 1

 z = []

 j = 3

 if q >= len(temp):

 continue

 elif temp[q] == ("N" or "ADJ"):

 j = 0

 elif temp[q] == 'V':

 j = 1

 elif temp[q] == ('PREP' or 'ADV'):

 j = 2

 elif temp[q] == ('CONJ' or 'INTERJ'):

 j = 3

 elif temp[q] == "see":

 j = 4

 while j<4:

 z.append(temp[q])

 q+=1

 j+=1

 if len(z) > 0:

 temp = cleanhouse(temp, z, True)

 z = []

 types = False

 q = 2

 while q < len(temp):

 if "," not in temp[q] and ";" not in temp[q] and not types: ## splits up program by commas to allow for multiple word definitions

 if "(" in temp[q] and ")" not in temp[q]:

 types = True

 z.append(temp[q])

 if q+1 == len(temp):

 temp = cleanhouse(temp, z, False)

 elif ("," in temp[q] or ";" in temp[q]) and "(" in temp[q] and ")" not in temp[q] and not types: ## accounts for parentheses

 types = True

 z.append(temp[q])

 if q+1 == len(temp):

 temp = cleanhouse(temp,z, False)

 elif types:

 z.append(temp[q])

 if ")" in temp[q]:

 types = False

 else:

 z.append(temp[q])

 temp = cleanhouse(temp, z, False)

 z = []

 q+=1

 thing = latindict.setdefault(temp[0], [temp[1:]])

 return latindict

def cleanhouse(temp, z, data): ## Consolidates multiple word definitions into one entry in the list.

 y = 1

 while y < len(z):

 temp[temp.index(z[0])]= temp[temp.index(z[0])] + " " + z[y]

 z[0] += " " + z[y]

 y+=1

 y = 1

 while y < len(z):

 if z[y] in temp:

 temp.remove(z[y])

 y+=1

 z = []

 if not data:

 temp = temp[:len(temp)-1]

 return temp

def translate(word, latindict): ##Translates each word of the sentence

 sentence = ""

 if " " not in word: ## Allows for single word translations

 translation = latindict.get(word)

 if len(translation[0][0]) == 1:

 translationcheck = str(translation[0][0]).split(' ')

 if len(translationcheck) == 0:

 translationcheck = translation[0][0]

 else:

 translationcheck = translation[0][0]

 if translation== None:

 print "No translation available for that word"

 elif translationcheck[0] == "see" and translationcheck[1].isupper(): ## accounts for "word trees" with definitions just referencing other words

 while translationcheck[0] == "see" and translationcheck[1].isupper():

 translation = latindict.get(translationcheck[1].lower())

 translationcheck = str(translation[0][0]).split(' ')

 if ',' in translation[0][0]:

 translation[0][0] = translation[0][0].replace(",","")

 sentence+=str(translation[0][0]) + " "

 else:

 if ',' in translation[0][0]:

 translation[0][0] = translation[0][0].replace(",","")

 sentence+=str(translation[0][0]) + " "

 else:

 word = word.split(' ')

 for n in word: ## allows for multiple word translations

 if ',' in n:

 n = n.replace(',',"")

 elif '.' in n:

 n = n.replace('.',"")

 elif ';' in n:

 n = n.replace(';',"")

 translation = latindict.get(n)

 if len(translation[0][0]) == 1:

 translationcheck = str(translation[0][0]).split(' ')

 if len(translationcheck) == 0:

 translationcheck = translation[0][0]

 else:

 translationcheck = translation[0][0]

 if translation == None:

 print "No translation available for that word"

 elif len(translationcheck) == 1:

 sentence+=str(translation[0][0]) + " "

 elif translationcheck[0] == "see" and translationcheck[1].isupper(): ## accounts for "word trees" with definitions just referencing other words

 while translationcheck[0] == "see" and translationcheck[1].isupper():

 translation = latindict.get(translationcheck[1].lower())

 translationcheck = str(translation[0][0]).split(' ')

 if ',' in translation[0][0]:

 translation[0][0] = translation[0][0].replace(",","")

 sentence+=str(translation[0][0]) + " "

 else:

 if ',' in translation[0][0]:

 translation[0][0] = translation[0][0].replace(",","")

 sentence+=str(translation[0][0]) + " "

 return sentence

def tagging(sentence): #Performs the tagging procedure-currently only works for nouns

 first = ['a', 'ae', 'ae', 'am', 'a', 'a']

 firsttags = ['1SN', '1SG', '1SD', '1SA', '1SB', '1SV']

 second = ['us|r/um', 'i', 'o', 'um', 'o', 'um']

 secondtags = ['2SN', '2SG', '2SD', '2SA', '2SB', '2SV']

 third = ['-|is', 'is', 'i', 'em/-', 'e/i', '-|is']

 thirdtags = ['3SN', '3SG', '3SD', '3SA', '3SB', '3SV']

 fourth = ['us/u', 'us', 'i/u', 'um/u', 'u', 'us/u']

 fourthtags = ['4SN', '4SG', '4SD', '4SA', '4SB', '4SV']

 fifth = ['es', 'ei', 'ei', 'em', 'e', 'es']

 fifthtags = ['5SN', '5SG', '5SD', '5SA', '5SB', '5SV']

 firstplural = ['ae', 'arum', 'is', 'as', 'is', 'ae']

 firstpluraltags = ['1PN', '1PG', '1PD', '1PA', '1PB', '1PV']

 secondplural = ['i/a', 'orum', 'is', 'os/a', 'is', 'i/a']

 secondpluraltags = ['2PN', '2PG', '2PD', '2PA', '2PB', '2PV']

 thirdplural = ['es/a', 'um', 'ibus', 'es/a', 'ibus', 'es/a']

 thirdpluraltags = ['3PN', '3PG', '3PD', '3PA', '3PB', '3PV']

 fourthplural = ['us/ua', 'uum', 'ibus', 'us/ua', 'ibus', 'us/ua']

 fourthpluraltags = ['4PN', '4PG', '4PD', '4PA', '4PB', '4PV']

 fifthplural = ['es', 'erum', 'ebus', 'es', 'ebus', 'es']

 fifthpluraltags = ['5PN', '5PG', '5PD', '5PA', '5PB', '5PV']

 cases = [first, second, third, fourth, fifth, firstplural, secondplural, thirdplural, fourthplural, fifthplural]

 tags = [firsttags, secondtags, thirdtags, fourthtags, fifthtags, firstpluraltags, secondpluraltags, thirdpluraltags, fourthpluraltags, fifthpluraltags]

 if ' ' in sentence:

 sentence = sentence.split(' ')[:-1]

 marktags = {}

 for n in sentence:

 if len(n) == 1:

 n = sentence

 print n

 wordtags = []

 for m in cases:

 counter = 0

 for o in m:

 if '/' in o:

 tempo = str(o).split('/')

 firsto = tempo[0]

 secondo = tempo[1]

 if '|' in firsto:

 firsto = str(firsto).split('|')

 firstfirsto = firsto[0]

 secondfirsto = firsto[1]

 if n.endswith(firstfirsto) or n.endswith(secondfirsto) or n.endswith(secondo):

 thing = tags[cases.index(m)]

 goal = thing[counter]

 wordtags.append(goal)

 else:

 if n.endswith(firsto) or n.endswith(secondo):

 wordtags.append((tags[cases.index(m)])[counter])

 elif '-' in o:

 wordtags.append((tags[cases.index(m)])[counter])

 else:

 if n.endswith(o):

 wordtags.append((tags[cases.index(m)])[counter])

 elif '-' in o:

 wordtags.append((tags[cases.index(m)])[counter])

 counter+=1

 thing = marktags.setdefault(n, wordtags)

 print marktags

 if n == sentence:

 break

 return marktags

def main():

 word = read_input()

 tags = tagging(word)

 print tags

 firsttime = time.time()

 latindict = makemeadictionary(word)

 sentence = ""

 dictionarytime = time.time() - firsttime

 print "Time to make the dictionary is: " + str(dictionarytime)

 translatetime = time.time()

 sentence = translate(word, latindict)

 thing = False

 temp = ""

 for n in sentence:

 if n == '(':

 temp+=n

 thing = True

 elif thing:

 temp += n

 if n == ')':

 thing = False

 sentence = sentence.replace(temp, "")

 print sentence

 translatetimetwo = time.time()

 translatetime = translatetimetwo-translatetime

 totaltime = translatetimetwo - firsttime

 print "Translation time is: " + str(translatetime)

 print "Total time taken is: " + str(totaltime)

if __name__ == '__main__':

 main()

#G00626239 arunge2

