
Creating a Modern Electronic Medical Records (EMR) System

TJHSST Senior Research Project

Quarter 3

Computer Systems Lab 2009-2010

Jeremy Chaikind

April 6, 2010

Abstract

This project will attempt to create a functional, user-
friendly medical management and medical records
(EMR) system. Web-based programming languages,
such as PHP, HTML, and CSS will be used with
MySQL databases. Databases will be designed using
the Relational Database Model and considering the
ACID (Atomicity, Consistency, Isolation, and Dura-
bility) paradigm. The EMR design will ensure ex-
pandability, intuitive interface, and practicality for
the end user.

Keywords: databases, HIPAA compliance, med-
ical systems, electronic medical records (EMR), web
applications

1 Introduction and Back-
ground

The business of medicine is a topic front and center
for many Americans today. Beyond the question of
health insurance reform, the United States govern-
ment is in the process of changing the medical indus-
try itself. Doctors have been given incentives to con-
vert physical, paper charts to electronic ones in the
near future. Soon after, physicians will be charged
fees for using paper charts. These changes present
a difficult situation for doctors. Despite the exor-
bitant costs of many preexisting Electronic Medical

Records (EMR) systems, some popular systems use
older programming techniques and languages, and
are as a result unintuitive and low-featured. This
project plans to remedy the situation by creating an
EMR system designed in conjunction with physicians
to ensure ease-of-use, using forward-thinking web-
based languages, including PHP, HTML, CSS, and
MySQL.

2 Researcher Experience

Attempting a project of this scale is a difficult un-
dertaking under any circumstances. The researcher’s
preexisting experience in programming and medical
applications makes the task somewhat more reason-
able. Prior to beginning this project, the researcher
had a strong understanding of the PHP, HTML, and
CSS, as well as basic experience with the MySQL
and Javascript programming languages that will be
used for this project. Within a few weeks, practi-
cal MySQL proficiency was cultivated through basic
database work.

3 Development

3.1 Review of Literature

In order to meet medical security standards, the re-
searcher examined HIPAA compliance for physicians

1



and physicians’s offices. Because this project primar-
ily requires technological compliance with HIPAA
regulations, an academic article specifically detailing
security practices for HIPAA-compliant data transfer
of EMR was studied. [Hristidis]

After an initial experimentation phase of this
project was completed, the exact nature of security
measures necessary for HIPAA-compliance was stud-
ied. An article about HIPAA-compliant digital stor-
age measures was considered, recommending the im-
plementation of meticulous documentation of actions
and backup, as well as suggesting compliance with
the National Institute of Standards and Technology
(NIST) 800 series of documents, which detail gen-
eral government guidelines for data storage and secu-
rity. [Davis]

Further investigation in this area resulted in dis-
cussion with Russell McWey, M.D., a physician at
the Virginia Hopspital Center in Arlington, VA who
works closely with the hospital IT staff to manage its
digital records. Based on a telephone interview with
and subsequent typed letter from Dr. McWey, the
researcher has determined that no encryption or ad-
ditional system security is necesary for an intraoffice
EMR system, negating the need for NIST compli-
ance. However, an ”audit trail” like that mentioned
in the HIPAA-compliant storage article is necessary
and will therefore be implemented in this project.
[McWey]

The researcher also studied of modern practices for
database management, including the ACID paradigm
for database design and the Relational Database
model. Initially, the topic was studied by informal
work on design with another student of the Com-
puter Systems Lab (Jason Koenig). Exposure to
the ACID paradigm continued by studying an arti-
cle specifically about database design and manage-
ment [Haerder]. The Relational Database model was
further studied in the context of an article about cre-
ating a general database system using both the Rela-
tional and Object-Oriented models to integrate me-
dia in an SQL database.

In keeping with the third quarter goal to fur-
ther user interface development, an article about
the creation of a robust, active-content-compatible
WYSIWYG (What-You-See-Is-What-You-Get) was

reviewed. Implementing the CRUD paradigm, this
system offered the end user to Create, Read, Update,
and Delete data, which are features of an active docu-
ment. [Karger, 257] The system created in the article
expands upon this idea by creating a WYSIWYG for
an intermediate user to easily modify the types of
data to which CRUD could be applied. [Karger, 258-
259] While the ideas in this article have not directly
influenced work done to date, the projected future of
this project will include user-customizable templates
for data entry. For this reason, work on templates
this quarter was done in a way to ensure automated,
function-based template design which may be imple-
mented in a WYSIWYG for CRUD content creation
such as this in the future.

3.2 Theory

To ensure the durability and utility of this EMR sys-
tem, a server using Linux, Apache, MySQL, and PHP
(LAMP) will be used. Unlike many other medical
management systems that use older, closed Microsoft
database technologies, this EMR will utilize the a
more open database model so that the system will be
applicable in the future.

The ACID paradigm will also be implemented for
this system. Implementation of ACID, an abreviation
for Atomicity, Consistency, Isolation, and Durability,
ensures that information retrieved from a database is
always correct.

Atomicity specifies that specific database functions
must be performed in total or not at all. [Haerder,
289] For example, if a function calls for a database
entry to be deleted in one table and added to an-
other, neither database action will occur until both
are requested. In this way, should the transaction
be interrupted, the entry cannot be deleted in one
place without being added to the other. Atomicity
prevents database corruption that could provide in-
correct information with disasterous results.

Consistency states that at all times actions called
on the database (assuming Atomicity) leave the
database in a correct state. [Haerder, 289-290] While
a database that fails to practice Atomicity may crash,
allowing the database to fall into an incorrect state, a
database that fails to practice Consistency can leave

2



the database in an incorrect state after functioning
correctly. As a result, a correctly-functioning Consis-
tent database will never write incorrect data to the
database.

Isolation demands that all database processes run
without knowledge of other functions running con-
currently. [Haerder, 290] In a database without Iso-
lation implemented, a user accessing one part of the
database could see incorrect data from an interme-
diate step of an ongoing database process. For ex-
ample, if one user accessed a patient record in order
to call him/her while another user was in the pro-
cess of changing the patient’s phone number, the first
user may see the old phone number, the new phone
number, or no phone number (if the second user ac-
cessed the record while the database transaction was
in progress). By implementing the principle of Isola-
tion, no two users could ever access the same record,
preventing this problem.

Durability ensures the integrity of all data by re-
quiring database data to survive any malfunction.
This could be accomplished with relative ease by in-
stituting measures of redundancy and requiring mul-
tiple sources to match in order to display informa-
tion. To prevent data loss on a larger scale, database
backup is a necessity. If Durability exists, one can be
certain that correctly-entered data will never become
corrupted.

The Relational Database model is also important
in a modern database design. The Relational model
uses a single, global, unique record ID to associate
various data to the same individual record. For exam-
ple, an individual John Doe may have a global ID of
123. Data relating to John Doe will be organized into
smaller, more focused tables. In the phone numbers
table, there might be three records for global ID 123,
representing John’s home, cell, and office numbers.
Two records for global ID 123 might be present in the
addresses table for John’s Manhattan penthouse and
his country residence. In the medical field, the ac-
curacy of data can literally determine life-and-death
situations, so a physician should never be hampered
by a strict program design for his/her EMR system.
With this in mind, the Relational model will be im-
plemented in this EMR system to ensure the physi-
cian has the most flexibility possible in data entry

and organization.

4 Expected Procedure and
Methodology

To program this EMR system, web-based languages,
such as HTML, CSS, and Javascript (for the user
interface) and PHP and MySQL (for database and
other active-web functions) will be used for almost
all aspects of the project. Initially, files will be lo-
cated on a personal remote web server. However,
the program will be transferred to a physical server
as soon as possible in order to permit security test-
ing to begin. To enhance the user experience, as-
pects of the AJAX (Asynchronous Javascript and
XML) varient AJAJ (Asynchronous Javascript and
JSON [Javascript Object Notation]) will be used to
create such elements as database-based autocomplete
form inputs. As a result, beginning to type certain
common phrases (such as medication names) into a
given template field will produce a list of options from
which the end user may choose (this will be further
explained in the Third Quarter Results section).

In order to test the EMR system, false data will
initially be used for alpha testing by the researcher.
This type of testing will be adequate for evaluat-
ing basic functionality of the program. For the pro-
gram to be effectively tested for intuitive interface
design, additional feature requests, and utility for
large amounts of data, actual patient data must be
used in the context of a physician’s office. The re-
searcher plans to test the system in the office of Pe-
diatric Ophthalmologist Melissa Kern, M.D. at the
Virginia Hospital Center complex in Arlington, VA.
The EMR system functionality and user interface will
be designed to best fit the needs of this office. Fur-
ther testing and application may result in work with
Barry Byer, M.D. at the Virginia Hospital Center, a
physician who frequently performs mission work in
third-world countries. Although his mission would
not necessarily benefit from an EMR system, he is
in the process of contacting affiliated medical clin-
ics and hospitals in these countries to see if such a
system might benefit them.

3



Figure 1: A screenshot of the first quarter Schedule
Patient screen.

Figure 2: A screenshot of the first quarter Physician
Schedule (week view) screen.

5 Results

5.1 First Quarter

First quarter work on the EMR system was largely
confined to exploratory work with PHP/MySQL se-
tups. Basic tasks for EMR systems, including adding
a patient, searching for a patient, scheduling a pa-
tient (Figure 1), and viewing a schedule by month or
by week (Figure 2), were implemented. While little
code from this experimental phase was used in the
final EMR design, implementing EMR screens fos-
tered MySQL fluency and understanding while pro-
totypes for the final screens were considered. Because
these constructions of EMR tasks were not designed
to be integrated into the final project itself, unstyl-
ized HTML forms were used for the practice screens.

Figure 3: A patient’s ”Facesheet,” displaying all
of his/her identifying information and any Charts
he/she might have

5.2 Second Quarter

Second quarter work on the EMR system was spent
in the design and early implementation phases of the
final, ”Mander” EMR system. First, a personal web
server was created for this project, implementing the
LAMP (Linux, Apache, MySQL, and PHP) system
to support the languages used in earlier stages of this
project. Next, the final database design for Mander
was created based on the relational model, keyed on
a global user ID that would link all patients, physi-
cians, and users to a Names table, in which crucial in-
formation for patient identification would be stored.
This key would be associated to any other table in
which a patient may have data. For example, a user
would be associated to a username and password in
the Users table, or a patient would be associated to
the various levels of his/her virtual chart. The virtual
chart is organized in a hierarchical manner. In this
construct, a patient may have multiple Charts (with
all related medical information for a patient), which
might have many Sheets (each representing a specific
interaction with a patient), each of which might con-
tain a few Records (which reflect only a single type
of data [i.e. templated data, plain text data, or asso-
ciated file data). This database structure was tested
throughout the second quarter using a Create New
Chart page, which used PHP functions to create rows
in the Name and Chart tables, search functionality
that accessed these tables to look-up a patient by
name, a Facesheet page that displayed all of a pa-

4



tient’s Charts, and a Chart View page that listed all
the Sheets in a Chart. Initial work began on a tem-
plating system, exploring both WYSIWYG-creation
and RTF-parsing approaches. However, the difficul-
ties in implementing such a system quickly became
too numerous to address as a small feature of a year-
long project, and the automated templating system
was postponed. Finally, basic user interface design
began for the Mander EMR, including development
of a navigation bar, page layout, and other tweaks,
all of which were tested seperately from the rest of
the project.

5.3 Third Quarter

The previous two quarters of this project were spent
largely in design phases. A prototype experiment ex-
ploring PHP and MySQL was conducted in first quar-
ter. The database design and interface functinos were
finalized durnig the second quarter. The third quar-
ter was entirely different, focusing on high-level im-
plementation of the database design paradigm. Work
began with basic template creation. Although the
researcher realized the infeasibility of using a WYSI-
WYG for easy, user-based creation of templates, the
idea of using templates for end-user data entry was
still a crucial tenet of the project. Initial attempts to
digitize the paper template began with hand-coded
HTML. Due to the design of the paper template be-
ing replicated, nested tables were needed to properly
implement a digital fabrication of the paper template.
Despite the confusing nature of table-based position-
ing, such a system was the only reasonable way to
implement Dr. Kern’s template. The template was
successfully coded in HTML and CSS, reproducing
the design of of Dr. Kern’s paper template without
form inputs.

Next, research began into the use of Javascript to
enhance the user interface of the templates. First,
exploration began on a way to allow multiple text
inputs for a single construct. Suppose a patient had
not one but 5 drug-related allergies. The physician
should be able to note this, just like the physician
should be able to write all of a patient’s allergies.
The solution adopted was to use a Javascript func-
tion to write a new instance of the text input each

time a button was pressed. If the physician added
too many inputs and needed to remove one, he/she
would simply have to click the button to remove in-
puts. Each input would have the same name with
a number at the end to signify the instance of that
element. While this user interface improvement has
yet to be implemented, its creation could be used in
future templates, and, more importantly, it served
as an introduction to the Javascript language with
which the researcher was unfamiliar.

The more useful UI element created this quarter
was the autocompletion input. This element would
be used to allow the end user to automate the entry
of commonly-used phrases. For example, a physician
may ask a patient what medications he/she is tak-
ing. An autocomplete input could be used so that
if the medication is one commonly used (i.e. As-
prin, MVI, etc.) the physician does not need to type
out the full name each time this phrase is used. An
autocomplete input is best created using a variant
on AJAX (Asynchronous Javascript and XML) to
transmit the typed letters to a PHP page, which looks
up the query in an SQL table, and prints the query,
returning it via AJAX to the original HTML page.
Initial work on the autocomplete system transmitted
plaintext information instead of XML. This system
easily allowed an autosuggestion, but not autocom-
plete feature. Discussions with Jason Koenig led to
the adoption of an AJAJ- (Asynchronous Javascript
and Javascript Object Notation [JSON]) based im-
plementation, which returned a text string to the
HTML page which the in-page Javascript would be
able to parse as an array, allowing for easy manipu-
lation of the suggestions. JSON functions provided
by Koenig enabled the implementation of a true au-
tocompletion input. Further modification of this sys-
tem was done to enable multiple, semicolon-spliced
autocompletion answers (i.e. multiple medications in
the same input).

Development continued with a revision of templat-
ing. While hand-coding the template was the sim-
plest way to begin the template design process, the
code it produced was difficult to understand and
debug, and the inevitable task of adding text in-
puts to the template would be difficult, tedious, and
mistake-prone. To avoid these issues, a set of PHP

5



Figure 4: A screenshot of Dr. Kern’s hand-coded
template.

functions were created to generate appropriately-
formatted text inputs and organizational elements.
Each function is specific enough to write code that
would generate a polished, unique user interface, yet
general enough to allow broad application for any
Mander EMR template. In addition to functions to
create the various types of form inputs (i.e. text,
textarea, checkbox, autocomplete, date [comprised of
a month drop-down box, a day drop-down box, and
a four-digit text input]), functions for overall page
layout were created. A function to create different,
bottom-bordered sections of the template, as well as
an invaluable function which would properly write
the HTML to translate any two-dimensional array
into a table, were created. Alongside development
of the PHP library, a copy of Dr. Kern’s template
was developed using the new functions. Because of a
few formatting tweaks, the function-generated tem-
plate approximated the paper template even better
than the hand-coded one. In order to further test
the viability of the template-generation library and
allow for preliminary user interface testing to begin,
a second template was created from the library func-
tions based on the paper template of neurologist Faye
Rosenbaum, M.D.

Figure 5: A screenshot of Dr. Rosenbaum’s function-
based template.

5.4 Testing

For the First Quarter and Second Quarter stages of
the project, false data were used. Approximately
20 fake ”patients” including the researcher, various
friends and family members, and various computer
science figures, were added as test data. For the First
Quarter, physicians inputed into the system were
based on the names of doctors with whom the exper-
imenter is familiar. First Quarter pages were run on
a private, remote web server using preinstalled PHP
and MySQL support. PHP files were written through
a browser-based text editor provided by the company
maintaining the web server. MySQL databases were
managed through PHP MyAdmin, also preinstalled
on the remote server. Second quarter work was writ-
ten to a personal LAMP server through the Secure
Shell (SSH) protocol. MySQL databases were also
manages through PHP MyAdmin, installed on the
server by the researcher.

Third Quarter testing was primarily done without
saved data. Because the user interface was almost
entirely disconnected from the database during de-
velopment, no data were used for testing. An excep-
tion was made for the autocomplete inputs, which
connected to a database table. Allergy autocomplete
suggestion data were written by the researcher; com-
mon medication autocomplete suggestion data were

6



based on a list of 25 common medications a patient
would be taking provided by Dr. Rosenbaum.

6 Discussion

First and Second Quarter work, while relatively un-
exciting, serves as necessary groundwork for this
project. First Quarter work was primarily used as an
experiment in PHP/MySQL development and initial
prototypes for database organization. Second Quar-
ter work was much more important to the final ap-
plication itself. In creating the LAMP server, the
library of database functions, and overall design of
the database, the work done Second Quarter set up
the all the theory to be applied later.

Third Quarter work differed from that completed
earlier in the year because of its primarily high-level
focus. In stark contrast to the structural work of
Second Quarter, the work in Third Quarter was all
centered around designing the user interface and user
experience for the Mander EMR. Projects as focused
as creating an autocomplete input or the live add
field system were a necessary part of Third Quarter
work. Broader scale work such as the creation of the
templating-functions library allowed for some of the
most visible results of the year.

7 Conclusion

The goal of this project is simple: to prove the fea-
sibility of a modern, web language-based Electronic
Medical Records system. The scope of the project
has fluctuated greatly over the year as the researcher
has better grasped the time required to complete cer-
tain tasks. This project will not yield a marketable
EMR system by the end of the year; such a goal is
too difficult to achieve in the time provided. How-
ever, the pieces of a strong database design and an
intuitive user interface have been created in these first
three quarters. In the Fourth Quarter, the database
and user interface will finally be integrated, and the
product of the union can be expected to prove that
an EMR can be created with modern programming
languages and techniques, as well as an easy to under-

stand user interface for intermediate and end users.

References

[McWey] Chaikind, Jeremy. (2009). [Interview with
Russell McWey, M.D., physician and technical
consultant at the Virginia Hospital Center in Ar-
lington, VA]. This source was used to determine
that encryption would not be necessary for an in-
traoffice EMR to maintain HIPAA compliance.

[Davis] Davis, J. (2005, February 9). Is your
storage management process HIPAA com-
pliant? In TechRepublic. Retrieved from
http://articles.techrepublic.com.com/5100-
10878 11-5567432.html This source was used as
an introductory look into the security measures
needed for HIPAA compliance.

[Haerder] Haerder, T., & Reuter, A. (1983,
December). Principles of Transaction-
Oriented Database Recovery. Computing
surveys, 15(4), 287-317. Retrieved from
http://portal.acm.org/citation.cfm?id=289.291
This source was used for extensive infor-
mation about the ACID paradigm and its
implementation.

[Hristidis] Hristidis, V., Clarke, P. J., Prabakar,
N., Deng, Y., and White, J. A., M.D.(2006,
November 11). A Flexible Approach for Elec-
tronic Medical Records Exchange. Retrieved
from School of Computing and Information Sci-
ences, Florida Intenational University website:
http://portal.acm.org/citation.cfm?id=1183568.
1183576&coll=Portal&dl=ACM&CFID=
52786661&CFTOKEN=17622714 This source
provided some background into the implications
of the HIPAA Privacy Rule on EMR transfer.
It also provided some background into methods
of data transfer for EMR.

[Karger] Karger, D. R., Ostler, S., and Lee, R.
(2009). The web page as a WYSIWYG end-
user customizable database-backed information
management application . UIST ’09: Proceed-
ings of the 22nd annual ACM symposium on

7



User interface software and technology, 257-260.
doi:10.1145/1622176.1622223 This source pro-
vided information about the WYSIWYG-based
active content editor.

[Seyed-Abbassi] Seyed-Abbassi, B. (1993). Object
oriented relational database with SQL inter-
face. In Proceedings of the 1993 ACM Confer-
ence on Computer Science (Indianapolis, Indi-
ana, United States, February 16 - 18, 1993).
CSC ’93. ACM, New York, NY, 497-504. DOI=
http://doi.acm.org/10.1145/170791.171128

[”Summary of the HIPPA”] Summary of the
HIPAA Privacy Rule. (n.d.). Retrieved
from Office for Civil Rights, US Depart-
ment of Health and Human Services website:
http://hhs.gov/ocr/privacy/hipaa/understanding
/summary/index.html This source was used as
an introduction to the regulations for physi-
cians’ offices created by the HIPAA Privacy
Rule.

8


