
Image Deblurring Techniques
TJHSST Senior Research Project
Computer Systems Lab 2009-2010

Vincent DeVito

April 8, 2010

Abstract

In the world of photography and machine vision, blurry images
can spell disaster. They can ruin an otherwise perfect photo or make
it impossible for a computer to recognize the image or certain com-
ponents of it for processing. The best way to counter this without
taking another, clearer picture is to utilize deconvolution techniques
to remove as much blur as possible. That is the design of this project.
My plan is to first design a program that takes an image, blurs it using
a known blur kernel, then deblurs it to reproduce the original image.
After that I will attempt to create a program to determine the blur
kernel of a naturally blurred image. I will use Python and a package
called Python Imaging Library that will allow me to utilize multiple
image formats. My success will be measured simply by how much the
output (deblurred) image matches the input (original) image.

Keywords: deblurring, deconvolution, image processing, noise re-
duction

1



1 Introduction and

Background

The goal of this project is to create a
program that can take an image in-
put that has been blurred (first ar-
tificially, and later hopefully by poor
image capture) and to employ image
deblurring techniques to restore the
image and create a sharp, more rec-
ognizable output image with as few
blur artifacts and noise as possible.

1.1 Previous Research

So far I have found a paper regarding
image deblurring and noise suppres-
sion called ”Image Deblurring with
Blurred/Noisy Image Pairs” by Lu
Yuan, et al. that I plan to utilize
in helping me understand the tech-
niques and algorithms that go into
reducing the noise of and deblurring
an image. In their research they used
a blurry image with proper intensity
and poor sharpness and paired it with
an identical picture with good sharp-
ness but poor intensity and riddled
with noise to create a sharp, correct
intensity output with few or no arti-
facts left in the output image.

Another paper1 I have read dis-
cusses an algorithm that the group of
researchers discovered that allows for
a mostly accurate estimation of the
blur kernel, or the function through

which the pixel values of the image
are blurred. Their algorithm takes
four inputs: the blurry image, a sec-
tion of the image that has a good
sample of blurring (in case the im-
age is not uniformly blurred), if the
blur is estimated to be more hori-
zontal or more vertical, and the esti-
mated size of the blue kernel. Given
these inputs, their algorithm can suf-
ficiently estimate the blur kernel such
that the image, which was captured
using poor technique with a standard,
off-the-shelf camera, is satisfactorily
deblurred with few artifacts after de-
convolution. Any artifacts that are
left can generally be removed by an
experienced photo editor.

1.2 Other Research

Through my own work I have ac-
crued a detailed understanding of ba-
sic and intermediate image processing
techniques and algorithms from vari-
ous online worksheets and lessons at
http://homepages.inf.ed.ac.uk/rbf/
HIPR2/wksheets.htm. I plan to
use these techniques to help me
code and understand the more com-
plex concepts behind image deblur-
ring and the intermediate steps in-
volved. For example, I have exten-
sively used the section referring to
the Fourier Transform, located here:
http://homepages.inf.ed.ac.uk/rbf/

1Source 2

2



HIPR2/fourier.htm.

2 Development

2.1 Project Design

I used the programming language
Python to write the code for this
project. I decided to use Python be-
cause of its simplicity and adaptabil-
ity. As for the images I will use the
uncompressed, grayscale .pgm image
format. This will allow me to con-
firm the accuracy of the outputs be-
cause of the uncompressed nature of
the .pgm, which means that the im-
age information doesn’t need to be al-
tered before being saved. Also, it is
much easier to code using the .pgm
format since it can be read in and
saved as a string without using any
packages or software.

The first step in this project is
to artificially blur an input image
using a known and given blur ker-
nel. This is accomplished by convert-
ing both images to the frequency do-
main, using the Fast Fourier Trans-
form (FFT), point multiplying the
two images, then converting them
back to the spatial domain using
the Inverse Fast Fourier Transform
(IFFT). This is known as convolu-
tion.

The next step is the deconvolu-
tion algorithm that, when given an
image and its known blur kernel, can

deblur the input image. This is fairly
straightforward and involves the re-
verse of the aforementioned convolu-
tion algorithm. This is done by in-
stead point dividing the blurred im-
age by the blur kernel in the fre-
quency domain. After this step, I can
attempt to add a noise reduction fil-
ter to remove any excess noise in the
image and further sharpen and clarify
the image.

The final step would be to design
a program that can estimate the blur
kernel. This program would first be
tested on blurry images with known
blur kernels to make sure that the es-
timated blur kernel is similar to the
actual blur kernel used. Then, af-
ter deemed acceptable, this program
would estimate the blur kernel of a
naturally blurred image with an un-
known blur kernel, which can then be
used to deblurring that image, hope-
fully to an acceptable level. This last
step is a large one and currently un-
der a lot of research since blind de-
convolution, as it is known, is quite
difficult. Currently, perfecting this
step is considered the ”holy grail” of
image deblurring and likely unobtain-
able with my limited knowledge of the
subject.

2.2 Testing

My project’s success will be measured
by its ability to take an artificially
blurred image and return it to its

3



original, sharp quality. I will test my
projects adaptability and thorough-
ness by running a series of tests that
will entail attempting to deblur im-
ages of different contrast with varying
magnitudes and types of blur. This
will test my programs ability to re-
pair images regardless of image con-

tent, or magnitude or type of blur dis-
tortion, although there will obviously
be an upper limit to the amount of
blur that can plausibly be removed,
as well as this algorithm not working
very well with all types of blur. An
example of a successful run is illus-
trated below:

Figure 1. This is an example of a blurry image input, with a particularly
blurry section highlighted.

Figure 2. This is the same section from Figure 1, but with the blur
drastically reduced, due to deconvolution.2

2.3 Theory

2.3.1 Fourier Transform

The Fourier Transform is heavily in-
volved with image convolution and

deconvolution because it allows for
greater speed and simpler code. The
Fourier Transform converts values in
an array from the spatial domain to

2This and the above are from Source 2

4



the frequency domain using a sum
of complex numbers, as given by the

equation:
The 2-Dimensional Discrete Fourier
Transform (DFT) does this us-
ing a matrix or 2D array of
values and uses a nested sum:

Since the 2-Dimensional Discrete
Fourier Transform uses a nested
sum, it can be separated to cre-
ate two 1-Dimensional Fourier
Transforms in a row, first in one

direction (vertically or horizon-
tally), then in the other direction.

This is known as the Fast Fourier
Transform (FFT) and runs signifi-
cantly faster than the DFT, since the
DFT has a runtime of O(n2) and the
FFT has a runtime of O(nlog2n). The
following is an example of a picture
being converted from the spatial do-
main to the frequency domain via the
Fourier Transform.

is then transformed to

The reason the FFT is so impor-
tant to image convolution and decon-
volution is that it takes long itera-
tive algorithms and turns them into
simple point arithmetic. For exam-
ple, image convolution becomes as
simple as taking the Fourier Trans-
form of the image and the blur
kernel (known as the Point Spread
Function (PSF) after transforma-
tion), transforming them to the fre-
quency domain and point multi-
plying the two images. Then the
two images can be converted back

to the spatial domain by the In-
verse Fourier Transform, given by

and the result will be a blurry (convo-
luted) image. To reverse this process
and deconvolute the image, assum-
ing the blur kernel is known, is as
simple as point dividing the trans-
formed image by the PSF, instead of
multiplying.

The IDFT can also be separated
and turned into the Inverse Fast

5



Fourier Transform (IFFT). When us-
ing the IDFT or IFFT, though, the
values need to be the full complex
numbers from the Fourier Transform.
This means that the IFFT cannot be

performed on an image that is trans-
formed to display the magnitude or
the phase of the Fourier Transform.
This is demonstrated below in Figure
3.

Figure 3. This shows the original image, the result of the IFFT using only
the magnitude of the Fourier Transform output, and the result of the IFFT

using only the phase of the Fourier Transform output.3

3 Results

Thus far I have confirmed my FFT
and IFFT are working correctly by
being to produce approximately the
same output image as the input im-

age after being converted to and from
the frequency domain. Also, my con-
volution program is working correctly
and can convolute any4 image using
any blur kernel.

3.1 Errors

My program has not been entirely
debugged and has some running er-
rors. My current roadblock is that
my deconvolution algorithm doesn’t

work for most blur kernels, even of
only one specific type. For example,
take the blur kernel in the above ex-
ample. For that kernel I can achieve a
roughly clear deconvoluted output as

3All images from Source 5
4For best results, I used a square image of size 128x128

6



seen below in Figure 3. This output
has some noise but is easily recogniz-
able and not blurred. However, us-
ing the same kernel, with the white
line shifted over one or two pixels,
the convolution algorithm produces
a similar blurry image, but the de-
convolution algorithm produces ex-
tremely high values that are very
tightly grouped, with one outlying
low value. This presents an issue,
since, when logarithmically or lin-
early transformed, the values are all
still high and tightly grouped, pro-
ducing an all white image, with the

exception of the one outlying black
pixel. I have not yet determined what
is causing this strange output or why
it changes suddenly with minor vari-
ations in the blur kernel, but I intend
to focus on this problem. I believe the
issue might be in the type of kernel I
am using and how that plays a role
in deconvolution. I speculate that it
is possible that by changing the blur
kernel slightly, I may have altered
what type of kernel it is and therefore
made the deconvolution method func-
tional, though this seems farfetched.

Figure 4. A noisy output of the deconvolution algorithm using the blur
kernel in the above example.

3.2 Scope

The scope of this project is rather
narrow, but important. It pertains
only to blurry images, but this is a
rather large problem in the worlds
of image processing, photography,
and machine vision. In photogra-
phy, blurry images are undesirable
because they lack sharpness or clar-

ity and in machine vision, blurriness
can make an image indecipherable by
the computer or render certain pro-
cesses ineffective, such as edge de-
tection. Blind image deconvolution
is also a very large area of research,
specifically on the subject of estimat-
ing unknown blur kernels to increase
adaptability for deblurring programs
to deblur any image.

7



4 Conclusions

I have managed to transform and in-
versely transform an image using the
Fourier Transform with complete suc-
cess, as well as successfully blurring
an image using convolution. As of
yet, I continue to work on the decon-
volution algorithm to attain complete
success, instead of the current partial
success.

4.1 Future Work

There is a lot of room for future work
on this project since, at this point,
I have yet to refine the deconvolution

algorithm. The next and obvious step
is to finish work on the deconvolution
algorithm so that it works correctly
and reliably, or at least predictably.
The next and final area of research
for this project is the one that is most
applicable to the real world and also
the subject of much study in the com-
puter science community. This is the
area of blind deconvolution, which es-
timates the blur kernel from an image
in which it is not known and then de-
convolutes the image based on this es-
timate. Research is ongoing in trying
to find the most efficient and adaptive
method of estimating the blur kernel.

References

[1] Brayer, J. M. (n.d.). Introduction to the Fourier transform. In
Topics in human and computer vision. Retrieved from Univer-
sity of New Mexico Department of Computer Science website:
http://www.cs.unm.edu/ brayer/vision/fourier.html

[2] Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., & Freeman, W. T.
(2006, July). Removing camera shake from a single photograph. ACM
Transactions on Graphics, 25(3), 787-794. doi:10.1145/1141911.1141956

[3] Fisher, R., Perkins, S., Walker, A., & Wolfart, E.
(2000, October). Hypermedia Image Processing Resource
(HIPR2) [Image processing learning resource]. Retrieved from
http://homepages.inf.ed.ac.uk/rbf/HIPR2/wksheets.htm

[4] Smith, S. W. (1997). A closer look at image convolution. In The scientist
and engineer’s guide to digital signal processing (pp. 418-422). Retrieved
from http://www.dspguide.com/

8



[5] Young, I. T., Gerbrands, J. J., van Vliet, L. J. (n.d.). Properties
of Fourier transforms. In Image processing fundamentals. Retrieved
from http://www.ph.tn.tudelft.nl/Courses/FIP/noframes/fip-Properti-
2.html

[6] Yuan, L., Sun, J., Quan, L., & Shum, H.-Y. (2007, July). Image deblur-
ring with blurred/noisy image pairs. ACM Transactions on Graphics,
26(3). doi:10.1145/1276377.1276379

9


