
Abstract
In the world of photography and machine vision,
blurry images can spell disaster. They can ruin an
otherwise perfect photo or make it impossible for a
computer to recognize the image or certain
components of it for processing. The best way to
counter this without taking another, clearer picture
is to utilize deconvolution techniques to remove as
much blur as possible. My plan is to first design a
program that takes an image, blurs it using a known
blur kernel, then deblurs it to reproduce the original
image. After that I will attempt to create a program
to determine the blur kernel of a naturally blurred
image.

Background
In my research I have found various methods of blind
and non-blind image deconvolution. One paper
discussed comparing a blurry, correct intensity image
with a sharp, noisy image to produce a proper,
deblurred output image with few artifacts. Another
paper discussed an algorithm they developed to
estimate the blur kernel and use that to deblur the
image from just a single photograph. Various
deconvolution algorithms already exist, and it is the
other component, the blur kernel, that requires further
research. The more accurately the blur kernel can be
estimated, the more accurate and clear the output
image will be.

Figure 1. An
example of
deblurring

Methods
The convolution and deconvolution process heavily
rely upon the Fourier transform (Figures 2 & 3). The
2D Fourier transform converts images from the
spatial domain to the frequency domain with complex
values. This makes convolution and deconvolution
simple, since they are just a matter of point
multiplication or division, respectively, of the
transformed image's pixel values with the
transformed blur kernel's pixel values. From there,
the inverse Fourier transform (Figure 4) converts the
convolution/deconvoluted image back to the spatial
domain.

Results
My results so far are a successfully running FFT
and IFFT program as well as a correctly functioning
convolution program. This program can take any
image (though square images of size 128x128 or
less are best to reduce runtime) and blur it using
any given blur kernel (see Figure 5). My
deconvolution algorithm is still in progress, though,
since I keep getting large, closely grouped values
that cannot be processed effectively by my current
transformations, resulting in an all-white image.
However, it does work for some kernels (Figure 6),
so I speculate minute details in the kernel may
affect its type or function. For future work, I plan to
correct and finish my deconvolution algorithm, do
more research into the types of blur kernels, and
improve my deconvolution algorithm to reduce the
noise.

Figure 2. 2D Fourier
Transform

Figure 3. Separated Fast
Fourier Transform

Figure 4. 2D Inverse Fourier
Transform

Figure 5. A picture blurred using given kernels.

X =

X =

Figure 6. The noisy
output of the

deconvolution
algorithm using the

first blur kernel.

Image Deblurring Techniques
Vincent DeVito

Computer Systems Lab
2009-2010

	Slide 1

