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Abstract

The goal of this project is to explore and implement image de-
blurring techniques. Many of these techniques involve some sort of
an image transform, and the most commonly used one is the Fourier
Transform. A Point Spread Function, which is the Fourier Transform
of the blur kernel, can be applied to an image in the frequency domain
after it has been transformed to create a blurry image. The opposite
of this can be done by applying a transform to a blurry image, and
after removing the point spread function from the frequency domain,
a deblurred image can be obtained.
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1 Introduction

Motion blur in images is a common problem for professionals in various fields.
When the image is deblurred, the usefulness of the image increases. Parts of
the image that were difficult to identify can be rendered to effective clarity.
This project will explore and implement image deblurring techniques. By
implementing these techniques, users can efficiently remove blur from an
image.



2 Background

Regarding many image processing techniques, transforming the image from
a spatial domain to a frequency domain is very helpful. In the area of image
deblurring, a Fourier Transform is useful in creating the frequency domain
image. The Discrete Fourier Transform only describes the frequencies con-
tained in the spatial domain of the image, as opposed to a Continuous Fourier
Transform which will describe a continuous range of frequencies.

The Discrete Fourier Transform is not sufficiently fast for an image of
size 256x256. Instead, speed improvements can be obtained by implement-
ing a Fast Fourier Transform. This transform relies on the fact that the Dis-
crete Fourier Transform is seperable. Originally, N, 2-dimensional transforms
would have to ben done. With the Fast Fourier Transform, 2N 1-dimensional
transforms have to be done, resulting in an efficiency on the order of N log N,
compared to N2 for a Discrete Fourier Transform. On a 256x256 pixel image,
speed improves from upwards of ten minutes to just five seconds.

After applying the Fourier Transform, a blur kernel can be applied to
the frequency domain image, and after applying an inverse transformation,
a blurred image will be obtained. This process is called convolution and
requires that the Fourier Transform of the blur kernel, known as the Point
Spread Function be multiplied to the Fourier Transform of the original im-
age. The same process can be done to remove blur from an image. This
is known as deconvolution. Instead of applying the blur kernel to the fre-
quency domain image, it can simply be removed, and then transformed back
to spatial domain to produce the deblurred image. This process is sim-
ply the inverse, instead of multiplying the transformed images, they can be
divided. Note that when working with images that have been Fourier Trans-
formed, image values are stored as complex numbers. Therefore, the identity
e = cosf + isin 6 is useful.

Attempting to traditionally deblur an image will result in unwanted noise
and ringing artifacts. However, a finite number of Fourier basis functions are
able reconstruct the image without much data loss. In determining the blur
kernel, iterating between updating the blur kernel and the estimated latent
image will ultimately allow the two to converge and produce an acceptable
deblurred image. The Richardson-Lucy algorithm is sufficient in blind de-
convolution, in which the PSF is not known. In the absence of noise, this
algorithm functions well, and by increasing the number of iterations, the
quality of the image increases. The formula is as follows, where h is the PSF,



f is the original image, and g is the blurred image. H* is the adjoint operator
of H, where Hf = g. g
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Deblurring can also be done with a pair of images: a blurry one and a
noisy one. By removing noise from the noisy image, an estimate of what the
final image should look like can be obtained. This helps in the estimation of
the blur kernel. Again, iterations between estimating the blur kernel, residual
deconvolution, and de-ringing will ultimately allow the image to converge and
produce an image of acceptable quality.

When a Fourier Transform is applied on an image, displaying the magni-
tude of the Fourier values can be an issue, due to their scale. Some values
may be too small or too large and can not be displayed properly as 8-bit
pixel values. Applying a logarithmic transform can fix this problem. How-
ever, the existence of these small Fourier values becomes a problem again
in the inverse process, in which the blurred image is divided by the PSF.
Dividing by these small values amplifies noise, and in some cases, may cause
unacceptable results, as seen in Fig. 7. I find this to occur when image
are blurred with Gaussian blurs and blurs that are small in size. To remove
noise that is created in this way, two types of filters can be applied. The
inverse filter is a high pass filter that sets all Fourier values deemed to be too
small to a common value. This way, division by small Fourier values will be
avoided. However, any additive noise will easily corrupt the resulting image.
A second approach, by using the Wiener filter, attempts to find a balance
between removing noise while preserving the quality of the actual image. The
Wiener filter will generally provide better results, but at the cost of higher
complexity and loss of efficiency.

The process of regularization involves introducing additional information
into a problem to allow a proper solution. This is particularly useful in
machine learning and inverse problems. In the case of image deblurring, the
inverse part of the process, where we divide the blurred image by the Point
Spread Function produces a loss of data. Regularization will usually exist as
some sort of restriction, forcing the final solution to fall in a set boundary
of answers. The effects of regulariztion can be seen in Fig 8. In the cases
of Tikhonov Regularization and Truncated Singular Value Decomposition,
images and blur filters must be expressed as matrices. In most code, images
are often stored in matrix arrays, with each cell in the matrix representing the
pixel value at a certain point in the image. However, in most code, operations




made with the images do not follow common matrix operations such as matrix
multiplication and division. Normally, multiplying a transformed image and
a Point Spread Function would take place very similarly to a dot product,
in which both images are treated as vectors, and one value is multiplied by
one other value. However, in regularization, the Point Spread Function must
be treated as a matrix, and original and blurred images must be treated as
vectors. In the basic matrix equation Ax= b, x will be the original image of
length N2, b will be the blurred image of length N2, and A will be the Point
Spread Function of size N?xN? or N* individual values. This is acceptable
for small matrices, but in image processing when images are at least 256x256
pixels, the Point Spread Function matrix scales up very quickly.

3 Development

Code for my project will be done primarily written in the C programming
language. I will also need to use imagemagick to convert various images into
the pgm format, which I can use to directly read color values. Testing will
revolve around applying forward and inverse Fourier Transforms to test the
functionality of the image transforms. Ultimately, after applying blur kernels
to the frequency domain image, I will be able to visually verify the effect of
the deblurring program.

In applying image deblurring techniques, I will be primarily focusing on
eliminating ringing artifacts and noise from a transformed image. The cre-
ation of noise can be both intrinsic and additive, that is deconvolution may
itself create noise, or additive noise present in the original image may gener-
ate even more noise when deconvoluted.

The Fourier image is often displayed with F(0,0) in the center of the
image. In the frequency domain with this particular shifting, the further
away from the center of the image, the higher the frequency is. Visually,
one can detect gradients in the Fourier transform that corresponds to the
original image in the spatial domain. For example, this image (Fig. 1) has
two dominating directions, one along the x-axis and another along the y-
axis. This can be seen in the Fourier image (Fig. 2) shown by the strong
lines intersecting at the middle, and in the original image shown by the border
of the mirror.

Modeling certain blurs is simple. A simple motion blur can be described
as a white line centered in a square image, with all other pixels black. This



image, essentially, the blur filter can then be transformed into the Point
Spread Function, and then used in convolution and deconvolution processes.
Gaussian blurs can be described as three-dimensional normal curves, much
like a "bulge”. 8-bit pixel values can be used to model the height of the
"bulge” at certain points, and thus, a disk that is white in the center and
moving outward, has decreasing pixel values, ultimately converging to black,
can describe a Gaussian blur. These blur filters should be centered in the
middle of the image and should be rotationally symmetric, so that the Point
Spread Function will also be centered in the middle and be rotationally sym-
metric. Different blur filters will produce different types of blurred images,
and using a Fourier Transform approach to blur an image, a large variety of
blurs can be modelled.

Fig. 3 outlines the image blurring process, in which the Point Spread
Function and the transformed image are multiplied. Different types of blur
can be modeled with the Point Spread Function, as seen in Fig. 5 and Fig.
6. Linear blurs are similar to camera shake which results in a shift of the
image. Gaussian blurs are similar to pictures that are taken out of focus
which results in loss of pixel clarity. Fig. 4 outlines the image deblurring
process, which is simply the inverse of the blurring process. The values
are divided instead of multiplied, and the image is returned to its normal
state. In this process, some very small Fourier values are divided, resulting
in amplification of noise.

Matlab is a good tool for general work with mathematics, but it also has
an Image Processing Toolbox that is very helpful for image deblurring. Many
functions necessary in the code that I have already written are implemented
in Matlab. Due to the complexity of the deconvolution techniques presented
thus far and the scope of this project, I will be implementing filters and
regularization in Matlab.

4 Discussion

Images serve various purposes in many different fields, and the clarity of an
image is almost universally preferred. Thus, a program to effectively remove
blur in images would be useful in any subject area. Such functionality would
allow photographers and image editors to be able to remove blur and increase
clarity of images. Casual image enhancement would allow photographers to
take more presentable pictures with less blur. Deblurring photographs taken



by roadside cameras would allow law enforcement to clearly read license plate
numbers. Photographs of astronomical objects are often blurred and can be
restored so that they can be more useful in studies. Images provide perfect
vision to an observer and can often give one large amounts of knowledge
from just one photograph. When the quality of the image is degraded, so
much information is lost and professionals are working with many unknown
variables. Recovering these images has many applications, and the sky is the
limit for image deblurring.
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Figure 1: Original Image

Figure 2: Fourier Transformed Image



Figure 3: Blurring an Image

Figure 4: Deblurring an Image
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Figure 7: Noise
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Figure 8: Regularization
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