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Abstract

The RSA encryption algorithm is commonly used in public secu-
rity due to the asymmetric nature of the cipher. The procedure is
deceptively simple, though; given two random (large) prime numbers
p and q, of which n = pq, and message m, the encrypted text is de-
fined as c = me (mod n). E is some number that is coprime to the
totient(n). The public key (n, e), however, makes it difficult for the
user to find the private key (n, d), due to the fact that given only n,
it is extremely difficult to find the prime factors p and q. The fastest
methods currently have O(sqrt(n)) complexity, but require expensive
resources and technology (Kaliski). The aim of this paper is to im-
prove on the factorization process required by the RSA encryption
algorithm.

1 Introduction

My project aims to research and compare the various factorization methods
available, including a proposal towards improving the current methods al-
ready available. There is an industry demand towards improving the speed
of the RSA cryptosystem, as it is widely used by agencies that require se-
cure transfer of information between clientele and administrators. Since the
security of the algorithm is depended on the mathematical difficulty and
computationally ?hard? problem of factoring, it is important to recognize
potential exploits of factorization.
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Figure 1: comparison of the various methods of integer factorization.

1.1 Background

Thefieldofpublickeycryptographyisrapidlyadvancing, duetothegrowthofinternetconnectionsaroundtheworld.Thereisagreatdemandforproperdistributionofpublickeysandabilitytosecuredataacrossgreaternetworks.Priortothe1970s, encryptionanddecryptionwasaccomplishedthroughthesamekey.However, thedecryption(orprivate)keyshouldideallybeaccessibleonlytotheregulatorsandnotthegeneralpublic.DiffieandHellman, tworesearchersfromStanfordUniversity, proposedtheideaofusingdifferentkeysforencryptionanddecryption, whichallowedforprivateaccesstothedecryptionkey(Hellman).Thereinlaystheheartofasymmetrickeyciphers, leadingtoarevolutionaryoverhaulofsecuringdataonline.Nolongerdidsuppliershavetoworryaboutallowingunauthorizedaccesstothedecryptionkey, whichincreasedoverallsecurityofsensitivedatatransfersontheweb.TheRSAencryptionalgorithmwasdevelopedbyRonaldRivest, AdiShamir, andLeonardAdlemanatMIT, andfallsintotheclassofasymmetricciphersknownas?trapdoorciphers.?Simplyput, trapdoor, oronewayciphersallowforsimpleencryption, butdecryptionremainsintherealmofnearlyimpossiblewithoutthedecryptionkey.ThefundamentalbuildingblocksofRSAremaininnumbertheory, modularexponentiation, integerfactorization(?expensive?), andprimegeneration.Atthecore, RSAreliesontwofacts :
1)multiplyingnumberstogetheriseasy, and2)factoringnumbersishard(Kaliski).Currentmethodsputfactorizationinsquarerootorder, whichmeansthatfactoring100000requiresapproximately367timesteps.Withnumbersthatexceed100digits, thesquarerootofsuchanumberisaround50digits, whichmeansthatthatthereare1025possibilities.Ifacomputerwereabletocalculateonemillionfactorizationsinasecond, thenoverthespanoftheuniverse, itcouldtry1024differentcombinationstotal(Davis03).Thus, tofindthefactorsofanumberwith100digits, onecomputerwouldtakeoverthespanoftheuniverse.Sincethebeginningofhumanexistence,mankindhaswrestledwiththeissueoffactorization.ThefirstprominentbreakthroughwasaccreditedtoFermat, whocoinedthe?differenceoftwosquares?algorithm.F irst, asmallestperfectsquareisfoundthatisgreaterthanthenumberinquestion, andthencheckingtoseeifthedifferencebetweenthenumberandthesquareisanotherperfectsquare.Ifitisnot, thenfindthenextsmallestperfectsquarethatisgreaterthanthefirstperfectsquare.Thismethodexploitsthedifferenceofsquaresproperty(a2?b2 =
(a?b)(a+b)), andisbetterthanbruteforce.Therehavebeenothermethodssincedeveloped, includingLenstra?sellipticcurvetechnique, andPollard?sprobabilisticalgorithm.ThefastestprocesscurrentlyisanexpansionofFermat?stechnique, knownastheQuadraticSieve(QS).ThereareseveralpermutationstotheQuadraticSieve, includingprocessesthatlenditselftoparallelizedinterpretations.

1.2 Scope of Study

The field of study will be in encryption and cryptanalysis in C.

2 Review of Literature

Rivest’s original paper on the RC5 algorithm has been helpful in my research
and understanding of the encryption mechanism in order to approach it from
an angle of attack. Since I wanted to experience the thought process on
breaking a cipher, I did not review other, widely available literature on RC5
cryptanalysis. After that, I studied two papers that detailed two different
methods in breaking the RC5. The first paper, titled ”On Differential and
Linear Cryptanalysis of the RC5 Encryption Algorithm,” offered the first
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approach taken towards attacking the RC5. Authors Burton S. Kaliski Jr.
and Yiqun Lisa Yin focused efforts on recovering the expanded S table, rather
than the input (thus, their results are key-length independent). Figure two
explains the algorithm procedure that Yin et al. used. Refer to Appendix A
for the version that I used for RC5.

In conclusion Yin et al suggest using a 12 round implementation of the
RC5, which helps prevent against most common differential/linear cryptanal-
ysis attacks. However, this paper had been published in 1995, and I expect
that recent innovations would make it possible to use attacks against the
RC5, so I continued looking for more recent papers. The most recent update
was in 1998, also authored by Yin and Kaliski, which further expanded on
their research.

There are several methods in dealing with block ciphers:

1. The exhaustive search - this is the most intuitive and brute-force type
of attack. Simply put, the attacker finds one plaintext/ciphertext com-
bination, and then essentially runs through all possible combinations
until a match is found.

2. Statistical searches - the attacker analyzes patterns and matches be-
tween plaintext/ciphertext combinations

3. Differential Cryptanalysis - the attacker choosese two plaintexts, P1
and P2, with altercations (”difference”) P’ between the two. After P1
and P2 are encrypted, their ciphertexts C1 and C2 are compared, and
the difference between the two is identified as C’. The goal of differential
cryptanalysis is to find a a pair of (P’, C’) that occur with more than
normal probaility.

4. Linear Cryptanalysis - the idea here is to find items (plaintexts, ci-
phertexts, etc.) that occur over several iterations with probaility !=
1/2 (Kaliski).

This research has led me since to Rivest’s RSA Encryption Algorithm;
The first paper I encountered was published by B. Kaliski, which described
the mathematical properties that functioned as the backbone of the RSA
encryption algorithm. He details several mathematical properties that are
mentioned in my literature review of the paper. In summary, the core aspect
of the security of the RSA is that factorization is difficult, or expensive. In
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terms of time spent/resources required, factoring large numbers has gained
notoriety in the mathematic community since the advent of these usage.
The RSA exploits this inherent property in order to increase security, but is
considerably slower than other competing asymmetric ciphers (ex. DES).

3 Development

For the first part of the quarter, I refined the code implementation of the RSA
cryptosystem in C and reading the mathematical concepts behind the code.
In addition, I read several papers outlining the core concepts and foundations
that the algorithm rests upon. When choosing large prime numbers, it?s of-
ten expensive for computer systems to process 200+ digits, which increases
the difficulty (ie. memory and time spent) of the problem. Upon further
examination, I found that the fastest method available was the Quadratic
Sieve, explained in Appendix B. The QS lends itself to parallel implementa-
tion, and reigns as champion in terms of speed for factorization fewer than
110 digits. Numbers that exceed this bound are better approximated by
General Number Field Sieve (Gerver). As of now, I have tested code im-
plementations of several various prominent prime factorization techniques in
order to determine the fastest on several conditions. Although many authors
(Gerver, Pearson, Pomerance) agree that the QS is the fastest algorithm up
to 110 digits, it is not as successful for ?medium large? numbers, as shown
in Figure A.

3.1 Overview

The second part of my development during this quarter was the implementa-
tion and testing of the RSA algorithm in C. The code is included in Appendix
B, and the results are as follows:

4 Results

(message modification generated from CrypTool version 1.4.21)

Original Text:
00000 44 65 61 72 20 4D 72 20 53 68 6F 70 61 68 6F 6C 69 63 Dear Mr

Shopaholic
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00012 2C 0D 0A 0D 0A 70 6C 65 61 73 65 20 6F 72 64 65 72 20 ,....please
order
00024 61 20 50 6F 72 73 63 68 65 20 61 6E 64 20 61 20 70 72 a Porsche and
a pr
00036 65 70 61 69 64 20 69 6E 73 75 72 61 6E 63 65 20 73 63 epaid insurance
sc
00048 68 65 6D 65 20 66 6F 72 20 4D 72 2E 20 44 6F 64 67 79 heme for Mr.
Dodgy
0005A 2E 0D 0A 0D 0A 52 65 67 61 72 64 73 0D 0A 48 6F 6E 65 .....Re-
gards..Hone
0006C 73 74 20 4A 6F 68 6E 0D 0A st John..

Name: SHA-1
Length in bit: 160
Algorithm ID: 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14

SHA-1 HASH - 2C 6B 70 15 B2 59 7A A6 43 44 43 80 08 B2 9B A9 8F
EE 24 88

RSA KEY
Bit length of N: 304
RSA modulus N: 6429507761112837689643763499274122434437202712643424378894205954992714908919292778096711251
phi(N) = (p-1)(q-1):
6429507761112837689643763499274122434437202707570891834526367855246908954559138973355674192
Public key: 65537
Private key:
2587911946387468840732911749810825574835878514778103295893480898630669870642774722342330737

ENCRYPTED HASH VALUE
Padding string: 01 00
Algorithm ID: 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14
Hash value: 2C 6B 70 15 B2 59 7A A6 43 44 43 80 08 B2 9B A9 8F EE
24 88

ASN-1 hash value: 01 00 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04
14 2C 6B 70 15 B2 59 7A A6
43 44 43 80 08 B2 9B A9 8F EE 24 88
Length in bit: 296
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Encrypted hash value: 15 45 EF 40 D3 49 DB 69 48 6D 1B 2E F5 A4
EC D6 51 EC AC 99 10 F3 78 E2 CF
45 0C E4 74 3C 03 FD 30 BA 07 5D B8 02
Length in bit: 304

Result from program:

Enter N: 6429507761112837689643763499274122434437202712643424378894205954992714908919292778096711251

Enter Message (in hexadecimal – post message modification):
2C6B7015B2597AA64344438008B29BA98FEE2488

Public Key (304,65537)
Private Key
(204,2587911946387468840732911749810825574835878514778103295893480898630669870642774722342330737)

Ciphertext: 1545EF40D349DB69486D1B2EF5A4ECD651ECAC9910F378E2CF450CE4743C03FD30BA075DB802
Time: 1.324 seconds

Appendix A. A Simple Example of the RSA

Encryption Algorithm

The algorithm ?
c = M e(modn)
M = cd(modn)
Public key: (n, e)
Private key: (n, d)
Where C represents the ciphertext, and M represents the plaintext message
in numeric format.
Choose two large primes (100 digits or more) p and q. For simplicity, small
primes will be chosen so the math is easier to follow: p = 11 and q = 7.
Multiply p*q, and set N equal to the result. This N is part of the public key.
N = p*q = 11 * 7 = 77
Choose a number e that is coprime (shares no common factors) with k=(p -
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1)(q - 1).
k=(p - 1)(q - 1) = (10)(6) = 60.
We choose e to be 13, which is also part of the public key. This information
is sufficient to encode the message.
For the decryption, one must find d such that ed = 1 (mod k). Since the
number k is not released to the public, it is extremely difficult for someone
to find d. Since we do know what k is, we find that:
13d = 1 (mod 60), or the inverse modular function
d = 37
Suppose a friend passes the message m = 53 (note that 1 ¡ m ¡ N). In order
to encrypt the message,
C = me(modN)
C = 5313(mod77)
The subsequent decryption:

M = cd(modN)
M = 53

Appendix B. Comparison table of various in-

teger factorization methods

1.55E+45 Time Success? Resultant

Brute Force 2.6 no 2 * 3 * 607 * 7669 * 55330323753934231552903581534602334349
Brent (p-1) 0.748 yes 2 * 3 * 607 * 7669 * 20947 * 413551 * 51083807 *
370770947 *
337227786373 Pollard 3.099 no 2 * 3 * 4655083 * 55330323753934231552903581534602334349
Williams (p+1) 0.483 yes 2 * 3 * 607 * 7669 * 20947 * 413551 * 51083807 *
370770947 *
337227786373 Lenstra (Elliptic Curve) 1.044 yes 2 * 3 * 607 * 7669 * 20947
* 413551 * 51083807 *
370770947 * 337227786373
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Appendix C. Code

1
2#include <s t d i o . h>
3#include <math . h>
4
5int phi ,M, n , e , d ,C,FLAG,m,D;
6
7int gcd ( int a , int b) // g r e a t e s t common d i v i s o r
8{
9int c ;
10
11i f ( a<b)
12{
13c = a ;
14a = b ;
15b = c ;
16}
17
18while (1 )
19{
20c = a%b ;
21i f ( c==0)
22return b ;
23a = b ;
24b = c ;
25}
26}
27
28// i n t p r i v a t e k e y ( i n t v a l )
29// {
30// i n t d ;
31// d= e
32
33}
34
35int t o t i e n t ( int X) // c a l c u l a t e s how many numbers between 1 and

N − 1 which are r e l a t i v e l y prime to
36N.
37{
38int i ;
39phi = 1 ;
40for ( i = 2 ; i < X ; ++i )
41i f ( gcd ( i , X) == 1)
42++phi ;
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43return phi ;
44int encrypt ( int message )
45{
46
47int r e s u l t ;
48r e s u l t=message ;
49int x ;
50for ( x=0;x<e ; x++)
51{
52
53r e s u l t=r e s u l t ∗message ;
54
55}
56
57r e s u l t=r e s u l t%n ;
58return r e s u l t ;
59
60}
61
62int decrypt ( int c i p h e r t e x t )
63{
64int x ;
65
66int p l a i n r e s=p l a i n r e s ;
67for ( x=0;x<d ; x++)
68{
69p l a i n r e s=p l a i n r e s ∗ c i p h e r t e x t ;
70}
71p l a i n r e s=p l a i n r e s%n ;
72return p l a i n r e s ;
73}
74
75}
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