Analysis of the RSA Encryption Algorithm

Betty Huang

Computer Systems Lab 2009-2010

Abstract

The RSA encryption algorithm is commonly used in public security due to the asymmetric nature of the cipher. The procedure is deceptively simple, though; given two random (large) prime numbers p and q , of which $\mathrm{n}=\mathrm{pq}$, and message m , the encrypted text is defined as $c=\operatorname{me}(\bmod n)$. E is some number that is coprime to the totient(n). The public key (n, e), however, makes it difficult for the user to find the private key (n, d), due to the fact that given only n , it is extremely difficult to find the prime factors p and q . The fastest methods currently have O(sqrt(n)) complexity, but require expensive resources and technology (Kaliski). The aim of this paper is to improve on the factorization process required by the RSA encryption algorithm.

Introduction

The RSA algorithm is heavily based on mathematical concepts, utilizing Euler's totient function and prime factorization, and the modulo function. In general, there is a public key function defined as (n, e) and a private key function defined as (n, d). The algorithm statement is given $c=m^{\wedge} e \% n$, where c is the ciphertext and m is the integer representation of the original message, $m=c^{\wedge} d \% n$, for some d. First, note that the totient function returns the number of integers that are coprime to the input, is used to calculate d. Note that with any prime number p, the totient function returns $p-1$:
$\mathrm{p}=5$
totient $(\mathrm{p})=4$
Since we are looking for $n=p q$, where p and q are prime numbers, the mathematical multiplication property allows us to calculate totient(n).
$p=5, q=11$
$\mathrm{n}=\mathrm{pq}=5^{*} 11=55$
totient $(n)=(p-1)(q-1)=(5-1)(11-1)=4(10)=40$
Now, we are interested in any positive number e that is coprime to totient(n). In this case, assume $e=3$. Now, we want to find d such that de $=1(\bmod$ totient $(n))$. Since we are guaranteed that a modular multiplicative inverse exists by specifying e such that e is coprime to totient n , we can find d by calculating the modular multiplicative inverse of e modulo totient(n):
$3 \mathrm{~d}=1(\bmod 40)$
$1(\bmod 40)=41,81,81+40 \ldots$ for simplicity, we use 81 , because it divides evenly into 3
$3 \mathrm{~d}=81$
D $=9$
Now, in this example, our public key is (55, 3), and our private key is (55, 9). Now, assume message $\mathrm{m}=32(1<\mathrm{m}<\mathrm{n})$. Then $\mathrm{c}=32^{\wedge} 3 \% 55=43$

We could find m by using the decrypt function $\left(m=c^{\wedge} d \% n\right): 43^{\wedge} 9 \% 55$.

```
int totient(int X) // calculates how many numbers
    between 1 and N - 1 which are relatively prime to
    N
{
```

```
int i;
```

int i;
phi = 1;
phi = 1;
for (i = 2 ; i < X ; ++i)
for (i = 2 ; i < X ; ++i)
if (gcd(i, X) == 1)
if (gcd(i, X) == 1)
++phi;
++phi;
return phi;
return phi;
}

```

\section*{Discussion}

During the previous quarter, I experimented with coding a break of the RC5. At first, I worked on trying to identify weak sections of the algorithm by studying the effects of simplifying the round and
rotation number. The first program written simply shifted through all the possible bit combinations
of RC5. This is the algorithm that Yin et al outlined in their paper. This quarter, I expanded Rivest's research into the RSA, which has greater practical applications while retaining a simpler structure.

\section*{Results}

\section*{ESULTS}
message mod
Original Text:
000004465617220 4D 72205368 6F 7061 68 6F 6C 6963 Dear Mr Shopaholic
00012 2C OD OA OD OA 70 6C 65617365206 F 7264657220 ,.....please order
00036657061696420696 E 737572616 E 6365207363 e epaid insurance sc
000486865 6D 652066 6F 7220 4D 72 2E 2044 6F 646779 heme for Mr. Dodgy
0005A 2E 0D 0A OD OA 52656761726473 0D 0A 48 6F 6E 65 .....Regards..Hone
0006C 737420 4A 6F 68 6E 0D 0A st John..
Name: SHA-1
Algorithm ID: \(\quad 302130090605\) 2B OE 0302 1A 05000414

SHA-1 HASH - 2C 6B 7015 B2 59 7AA6 4344438008 B2 9B A9 8F EE 2488

\section*{RSAKEY}

Bit length of \(N\) :
6429507761112837689643763499274122434437202712643424378894205954992714908919292778096 711251
phi \((N)=(p-1)(q-1)\) :
6429507761112837689643763499274122434437202707570891834526367855246908954559138973355 674192
Public key: 65537
2587911946387468840732911749810825574835878514778103295893480898630669870642774722342 330737
ENCRYPTED HASH VALUE

\section*{Padding string: 0100}

Algorithm ID: \(\quad 302130090605\) 2B \(0 E 0302\) 1A 05000414
Hash value: \(\quad 2 C 6 B 7015\) B2 59 7AA6 4344438008 B2 9B A9 8F EE 2488
ASN-1 hash value: 0100302130090605 2B 0E 0302 1A 05000414 2C 6B 7015 B2 59 7AA6 43 44438008 B2 9B A9 8F EE 2488
Length in bit:
Encrypted hash value: 1545 EF 40 D3 49 DB 6948 6D 1B 2E F5 A4 EC D6 51 EC AC 9910 F3 78 E2 CF 450 OC E 474 3C 03 FD 30 BA 07 5D B8 02
Length in bit: 304

\section*{Result from program}

Enter N
429507761112837689643763499274122434437202712643424378894205954992714908919292778096 711251

Enter Message (in hexadecimal -- post message modification)
2C6B7015B2597AA64344438008B29BA98FEE2488```

