Agent-based modeling of urban society and interactions

Andrew Imm
TJHSST Computer Systems Research Lab
Q3 2009-2010

April 7, 2010

Abstract

Current systems used to model the spread of
disease treat populations as single entities,
and neglect the actions of individuals. By
developing an agent-based simulation fo-
cused upon the accurate modeling of social
interactions seen in an urban environment,
a testing bed that resembles a modern city
arises. This testing environment — with its
accurate modeling of day-to-day interactions
within a city — provides a far better sys-
tem to use when developing epidemiology
simulations. Using an implementation of
goal-oriented agents who are guided by a
number of variables that make up their
unique and individualistic ”personalities,”
this program attempts to create this type of
urban model and use the system to run a
number of epidemiological studies. Once the
virtual society is established within its rou-
tines, and a network of social relationships
has developed within the city’s inhabitants,
the simulation will reach an autonomous
running state where it can develop and grow

on its own. At this point, the introduction
of a simulated influenza virus will help
determine how an urban population reacts
to such an infection, and how the disease is
likely to spread through the city. Various
quarantine methods will also be tested in
order to measure their effectiveness.

Keywords: Agent-based, urban simula-
tion, social networks, urban society, interac-
tions, disease, epidemiology

1 Introduction

By taking into account the needs and moti-
vations of people, a realistic simulation of an
urban society can be created. This project
builds a system of agents who navigate their
city according to individual schedules, inter-
act with others to gather information and sat-
isfy a need for socialization, and ultimately
make their decisions through a complex sys-
tem of algorithms that take into account the
various aspects of an agent’s personality. Al-

though guided by their own rules, the actions
which the agents take in response to their en-
vironment and each other lead to an emer-
gent behavior in the overall society. Such a
system is individual-driven, because agent ac-
tions are not globally controlled by a single
method, but rather by the preferences and
traits of individual agents. The system is also
designed to be extremely extensible and mod-
ifiable — effectively, it can be used to test
the effect of any representable stimulus upon
a bustling urban environment. With the sim-
ulation completed, this project will look into
the implementation of epidemiology studies
in this environment. These studies will fol-
low the virtual citizens of the simulation af-
ter a virus is introduced into the city. The
agents’ interactions with each other provide
a vector for viral transfer, providing a chance
to study how the virus spreads along social
networks. Finally, the effectiveness of vari-
ous quarantine methods can be analysed in
order to create a contingency plan that can
be implemented in the real world.

2 Background

In the field of epidemiology, most models used
to predict the outcomes of plagues and epi-
demics are math-based. They treat the en-
tire population of a region or nation as a
single entity. This take on the problem of
studying the spread of disease has one major
downfall — it assumes that all members of
the population have similar behaviors. If any
stratification is done to divide the population
into subgroups, these are generally only re-

lated to succeptibility to the disease in the
study. In other words, the unique charac-
teristics of individuals are lost. An agent-
based model, while more processor-intensive
than a strict mathematical model, brings into
play this individuality. However, past models
that took an agent-based approach were very
simplistic. For instance, viral modeling has
been popular in the TJHSST Computer Sys-
tems Research Lab for years, but nearly every
project has involved agents moving randomly
within a closed, featureless environment. Ef-
fectively, these simulations resembled noth-
ing more than an experiment of specialized
bacteria moving around in a petri dish —
hardly an experiment that can be used to
make generalizations or conclusions about a
human population. For such conclusions, the
agents in the model must act as humans do;
this necessity provides the reason for devel-
oping an accurate simulation of an urban so-
ciety.

The in-depth qualities of this simulation
will provide an effective testing environment
for epidemiology studies. Because the simu-
lation is designed with a focus on individual
interactions, the program works well for sim-
ulating the spread of disease from one indi-
vidual to another. Using agent-based mod-
els to analyze the spread of disease is some-
thing that has been explored before by a few
scientists, but the fact is that it is not a
mainstream method of epidemiology model-
ing. Dr. Stephen Eubank from Virginia Poly-
technic Institute is one of the leaders in the
field of agent-based epidemiology modeling,
and his projects explore the spread of many
diseases in a variety of environments. For in-

stance, his "Modelling Disease Outbreaks in
Realistic Urban Social Networks” takes on a
similar problem as my project does — ex-
ploring the spread of disease through a social
network. However, his program does not take
into account all of the aspects of simulating a
city that mine does. With the extra features
found in my simulation model, I hope to cre-
ate a platform that can accurately assess the
quality of various quarantine methods when
dealing with infectious diseases.

3 Development

The development of this project has been
divided into three different groupings of
code. The first piece of code represents the
actual simulation; it is this code that is
used when the simulation is finally run. The
second piece of code is composed of various
tools and helper programs that are used to
expedie the process of project development.
The third and final piece of code includes
any tests that are run in order to analyze
the stability and efficiency of the simulation.
Although only the first group of programs
is used in the final simulation, the other
groups ensure that the final product is de-
veloped as quickly and accurately as possible.

3.1 Simulation

The simulation makes up the majority of the
code written for this project. Initially, it
loads a map file that tells the simulation how
to construct the city. It then loads an agent

file which tells the program how to config-
ure the virtual city’s population. Each agent
is assigned a name, a schedule, and a ”per-
sonality” — a set of preferences that dic-
tate how likely the agent is to perform var-
ious actions. Once the world and its inhab-
itants have been built, the program initial-
izes its internal clock to 12:00 midnight on
day 0. As the model runs, the virtual clock
updates, and eventually agents wake up. As
time progresses in the simulation, the agents
go about the daily routines dictated in their
schedules, navigating the city using the simu-
lation’s path-finding algorithm. Using built-
in methods, they can be ordered to travel to
different buildings or areas of the map, and
are able to find their own space to inhabit
in each building they visit. Inherently, the
agents encounter others throughout the day,
and begin to remember other agents whom
they often see. These memories of acquain-
tances are the beginning of the agent’s so-
cial network: a stored list of friends and col-
leagues that allows the agent to keep track of
people it has already met. The agent’s list of
acquaintances also keeps track of how well the
agent knows others; this data is used by the
agent to decide whom to interact with. As
the simulation ages, the virtual city begins to
resemble its real counterpart. Agents become
established in their routines, and have de-
pendable networks of friends that keep them
socially active. At this point, a range of tests
can begin in the simulation. Manipulation or
addition of variables — such as a virus — at
this stage ensures that the results resemble a
real-world reaction as best as possible.

The simulation is initialized with a map that

is formatted in the following way:

[width |

[height |

buildings :
[Building]=[x1],[y1],[x2] ,[y2]
map :

0000000000000...
0oooo0111111111...
0000111111111...

The first lines contain [width| and [height],
which are the width and height (respectively)
of the map in terms of grid squares. The next
line contains the header "buildings:”, which
denotes that building definitions will follow.
These building definitions are structured as
seen, where [Building] is the internal name
of the building that is used to refer to the
specific area of the map, and [x1],[y1l] and
[x2],[y2] are the coordinates for the top-left
and bottom-right corners (respectively of the
building area. After all building definitions
have been listed, the next line contains the
header "map:”, which denotes that the ac-
tual map data will follow. From that point,
each line of the file represents a row on the
map, where each individual character is a
number representing the terrain type at that
data point.

The agents are then loaded using a file that
is formatted in the following way:

[Agent Name|

(=] 0v])

{

—[time] [location]

The first line contains the agent’s name,
which is enclosed by square brackets (”[”
and ”]”). The next line contains the agent’s
initialization coordinates, where [x| is the
x-coordinate and [y] is the y-coordinate of
the point on the map where the agent begins
its life. The next few lines, between the ”{”
and the ”}” contain the agent’s schedule.
Each line of the schedule contains the [time]
at which the agent needs to navigate to the
[location]. The final lines after the schedule
contain various characteristics that can be
assigned to the agent, where [characteristic]
is simply the name of the characteristic, and
[value] is a floating-point number from 0.0 to
1.0.

Agents navigate the map according to
their schedule, stepping through it to check
whether they should be moving to a new
location with each time increment. Their
navigation method is a standard A* search
based on the grid of the map, where hori-
zontal and vertical movements of one square
constitute a cost of 10, and diagonal move-
ments of one square constitute a cost of 14
(10 times 4/2). Since agents are constantly
moving, they are not treated as obstacles by
the navigation method. However, multiple
agents cannot occupy the same square on

the map, so agents who are directly neigh-
boring the currently-navigating agents are
temporarily seen as obstacles. This behavior
allows many agents to attempt to reach a
single point in an effective realistic way: as
the crowd gathers around the goal point,
agents fill in the gaps in the crowd to form an
approximately circle-shaped mass of agents
around the point.

When agents find themselves neighboring
each other, they always take notice of each
other. They also record how often they
have encountered certain individuals, so as
to remember acquaintances and how well
they know each other. If they see another
agent whom they know well, they are given
the opportunity to interact with that agent.
Such interaction can involve a variety of
actions, depending on the structure and
application of the simulation. Agents might
wish to share specialized knowledge with
each other, or they might unknowingly
spread a virus through interaction.

3.2 Additional Programs

This project requires the creation of other
programs that speed up the process of devel-
opment. For instance, the simulation uses
complex files to store maps, and the easiest
way to create these maps is with a secondary
program. The map builder allows the user
to create maps with a graphical interface
that displays the map as it will appear when
the simulation is run. The program can also
be used to create buildings on the map, and
such buildings are used by the simulation

in order to determine where to send agents.
The map builder also features a variety
of other features that can be useful for
development, including distance calculations
and map-printing abilities. While programs
such as the map builder are not used in the
final simulation, the products they create
enable the experiments of this project, and
these programs are therefore crucial to the
completion of this project.

3.3 Tests

In order to improve the efficiency of the
program and determine the optimal scale of
the simulation, various tests have been used
to analyze the program’s internal algorithms.
These tests imported methods from the
simulation and ran them on large sets of
data to determine their practical limits. One
algorithm that was very important to test
was the path-finding method. This is one of
the most frequently-called methods in the
simulation, and it needed to be tested to
determine how many times it could be run
per program cycle before a noticeable lag oc-
curred. Testing it again and again with large
sets of data will helped to determine this
number. It was also through these tests that
serious flaws were found in the path-finding
algorithm that prevented agents from effec-
tively reaching their goals and navigating
efficiently. Agents eventually ended up in
traffic jams that slowed city movement to a
standstill, ruining the simulation. Analysis
from these tests eventually determined that
agents needed to avoid treating each other

as obstacles unless such categorization were
absolutely necessary.

A NeO tk

i

05:13 - Day O

Figure 1: Agents navigating towards a green square in one part of the map

4 Discussion

Currently, the simulation is at a stage where it can load a map and a file full of agent
definitions. The specifications laid out in the map file give a variety of details as to world
terrain and the placement of named ”buildings,” which are used to refer to contiguous areas
of the map. The simulation creates the agents as they are specified within the agent file,
each with its own name, schedule, and personality attributes. The simulation keeps track of
virtual time, and uses this clock to time and control the actions of agents. As it is, the agents
within the simulation can continue to navigate the map indefinitely, moving to the various
destinations indicated in their schedule. At they follow their daily schedules, they have the
opportunity to interact with neighboring agents, potentially transmitting items through this
interaction. Tests have been performed which involved the transfer of knowledge through
this medium, and it can later be implemented to simulate the spread of disease. The other
large piece of code is the map builder, which currently creates maps with far more features
than those that are used in the simulation at this point. The map builder features a graphical

7

800 Map Editor

Figure 2: The map builder user interface

user interface that makes creation of the map much easier than editing a text file by hand.
Dialogs for creating buildings on the map, as well as defining new types of terrain allow for
a feature-filled map creation environment.

Appendix A. Code Samples

This code contains the definition of the Agent class, which includes all of the complex
pathfinding code.

def __init__(self,id,x,y,size ,canv,map,attr):
print ’Creating._Agent’ id
self.id = id

self.x = x
self .y =y
self.size = size

self .canvas
self .map = map

self.attribs = attr

self.steplist = []

self.disp = canv.create_oval (x*size ,yxsize ,(x+1)*size ,(y+1)*size ,width=0, fill="#000000")
self . waitcount = 0

self .waitmax = 3

self .tempchange = {}

canv

def step(self):
#print self.id
#raw_input ()
if self.steplist:
ss = self.steplist.pop()
if self .map[ss] = None:
c,d = ss.split (”.”)
self.goto(int(c),int(d))
else:
self.steplist.append(ss)
self.waitcount += 1
if self.waitcount >= self.waitmax:
self . waitcount = 0
if len(self.steplist) > 1:
nbl = self.getmoves(self.x,self.y)
for nbi in nbl:

nb = nbi[0]

if self .map[nb] != None:
self.tempchange [nb] = self .map[nb]
self .map[nb] = —1

#print nb, "is INVALID’

#print self.steplist

destx ,desty = self.steplist [0].split(”.”)

#print self.id, 1s RENAVIGATING. Destination is ’,destr,desty

self .navigate(int (destx),int (desty))
else:

self.steplist = []
for tnb in self.tempchange:

self .map[tnb] = self.tempchange[tnb]
self.tempchange = {}
#print self.id, ’is DONE renavigating’

def goto(self ,c,d): #physically moves the agent to the specified coordinates
z = str(self.x)+”.7+str (self.y)

self .x = ¢
self.y = d
self .map[str(c)+”.”+str(d)] = self .map|[z]

self .map[z] = None
self.canvas.coords(self.disp,c*self.size ,dxself.size ,(c+1)xself.size ,(d+1)*self.size)

def navbuilding(self ,buildingname): #navigates to a named building
if buildingname in positions:
plist = []
for p in positions [buildingname]: plist.append(p)
while len(plist) > 0:
ri = int(random()*len (plist))
keystr = str(plist [ri][0])+”.7+str(plist[ri][1])
if self . map[keystr] = None:
a

def navigate(self ,c,d): #navigates to the specified coordinates using Ax
if self.x = ¢ and self.y = d:
return
self.steplist =
self .steplist = self.findpath(self.x,self.y,c,d)
#print self.steplist
if self.steplist:
self.steplist.pop()

def getmoves(self ;a,b):
if not (str(a)+”.”+str(b) in self.map):
return []
movelist = []
for xx in range(—1,2):
for yy in range(—1,2):
if not (xx = 0 and yy 0):
keystr = str (at+xx)+”.7+str (b+yy)
if keystr in self.map and self.map|[keystr] != —1:
f =10
if xx '= 0 and yy != 0:
f =14
movelist.append ([keystr, f])

return movelist

def findpath (self ,a,b,c,d):

open = {}

closed = {}

mystr = str(a)+”.”+str (b)
closed [mystr] = [”START” ,0]
moves = self.getmoves(a,b)
min = 999999999

mindex = ”"—1”

if not moves: return []
for m in moves:
ik =m[0]. split(".”)

j = int(j)
k = int (k)
open[m[0]] = [mystr,m[1]] #[parent,f—value] (we can calculate h at any time from f)

md = self.mdist(j,k,c,d)
if m[1]+md < min:
mindex = m[0]
min = m[1]+md
return self.pathhelper (mindex,c,d,open, closed)

10

def mdist(self ;a,b,c,d):
return (math. fabs (a—c)+math.fabs(b—d))*10

def pathhelper(self ,mystr,c,d,open,closed):

a,b = mystr.split(”.”) # current square

a = int(a)

b = int(b)

closed [mystr] = open|[mystr]

del (open [mystr])

if a = c and b = d: return self.extractpath(mystr,closed)
gg = closed [mystr][1]

mm = self.getmoves(a,b)

for m in mm:
if not (m[0] in closed):
if not (m[0] in open):

open[m[0]] = [mystr,gg+m[1]]
elif ggtm[1l] < open[m[0]][1]:
open [m[0]] = [mystr,gg+m[1]]
min = 999999999

mindex = ”—1”
if not open: return []
for m in open:
j,k =m.split (7.”)
j = 1int(j)
k = int (k)
md = self.mdist(j,k,c,d)
if open[m]|[l]+md < min:
mindex = m
min = open [m][1]+md
return self.pathhelper (mindex,c,d,open, closed)

def extractpath(self ,mystr,closed):
str = mystr
steps = |[]
while str != ”"START”:
steps.append(str)
str = closed [str][0]
return steps

This code contains the map- and agent-loading code used by the simulation to read those
system components from external files.

def loadagents (path):
global lastagent
print ’loading._agent_from._file:’ 6 path
file = open(path).read ().split(’\n’)
info =
k=0
while k < len(file):
print k, =’ file [k]
if file [k] =— ’:
print ’CREATE_AGENT’ |lastagent
genagent (info ,lastagent)
lastagent += 1
info = []
else:
info.append(file [k])
k +=1

11

def genagent (info ,count):
if len(info) = 0 or info [0][0] != ’[’:
return
name = info [0][1: —1]
c = info [1][1: —=1].split(’,”)
coords = [int(c[0]),int(c[1])]
attribs = {}
k=2
while k < len(info):
line = info[k].split(’'=")
attribs [line [0].strip ()] = float ((line[1].strip()))
k+=1
newagent = Agent (count,coords[0],coords[1], grid_-size ,canvas ,map,attribs)
keystr = c[0]+ . 4c[1]
agents.append (newagent)
map| keystr] = newagent

def loadmap (filename):

global w,h

global time

print ’loading.map:’,filename

file = open(filename).read ().split(’\n’)
data = []

w = int(file [0])
h = int(file [1])
canvas.config (width=grid_sizexw, height=grid_sizexh+24)
k=2
while k < len(file) and file [k].lower () != ’buildings:’:
k+=1
if k >= len(file): return
k +=1
while k < len(file) and file [k].lower () != ’map: ’:
try:
print file [k]
a = file [k].split (’=")
bdefn = a[1].split(’,")
buildings[a[0]] = []
for x in bdefn:
buildings[a[0]].append(int(x))
except:
print ’'Failed_to.read_building ...’
k+=1
print buildings
k+=1
1 =0
while k < len(file):
i =0
for x in file [k]:
data.append (int (x))
if int(x) != 0:
keystr = str(j)+ . +str(1)
map [keystr] = None
if int(x) = 2:
for bd in buildings:
if within_rectangle(j,1,buildings[bd]):
if bd in positions: positions[bd].append((j,1))

12

else: positions[bd] = [(j,1)]
break
canvas.create_rectangle (jxgrid_size ,(1)xgrid_size ,(j+1)xgrid_size ,(14+1)xgrid_size ,
ja=1
k+=1
Il =1
print positions
for bd in buildings:
b = buildings [bd]
canvas.create_rectangle (b[0]* grid_size ,b[1]* grid_size ,(b[2]4+1)*grid_size ,(b[3]+1)*grid_size
time = [0,0,0]

def within_rectangle(x,y,rect):
return (x >= rect [0] and x <= rect [2] and y >= rect[1l] and y <= rect [3])

References

(1]

2]

(3]

(4]

(5]

Conte, R. Agent-Based Modeling for Understanding Social Intelligence. Proceedings of the National Academy of Sciences
of the United States of America, 2002.

Eubank, Stephen. ”Modelling Disease Outbreaks in Realistic Urban Social Networks.” Nature 13 May 2004: 180-184.

Jiang, Bin. Agent-Based Approach to Modelling Environmental and Urban Systems Within GIS University of Gavle,
Sweden. Department of Geomatics.

Kretzschmar, M, and Morris, M. Measures of concurrency in networks and the spread of infectious disease. Math Biosci.
133(2): 165-95.

Lester, Patrick. A* Pathfinding for Beginners. 18 Jul. 2005. Web. 3 Oct. 2009.
ihttp://www.policyalmanac.org/games/aStarTutorial.htm, .

13

