
Tagging and Statistically Translating Latin Sentences

Andrew Runge

April 6, 2010

Abstract

In developing language translation software,
an increasingly common method is to tag
words based on their role in the sentence
in order to determine where they should be
in the sentence, and then put them in that
slot to create a basic, sometimes awkward
translation. The goal of this project is to tag
the sentences and then use a new method of
statistically analyzing the words based on
part of speech pairings in order to generate
the most sensible and accurate translation of
a Latin sentence.

Keywords: Machine Learning, Statistical
Translation, N-Gram

1 Introduction

The field of machine translation has been
growing significantly over the past few years
in order to make computers more helpful and
useful in interacting with humans. Language
translation has evolved greatly through the
use of methods such as word tagging. By
tagging words for their important character-

istics, it allows the computer to greatly nar-
row down the range of possible translations.
It helps the computer to better recognize the
role a word plays in a sentence, and from
there helps it make better decisions about
where the word should go in the sentence with
relation to the other words.

Figure 1: Tree of words sorted by sentence
role from the assorted works of Cicero gener-
ated by the methods of McMahon and Smith.

1



In addition to the use of word tagging, sta-
tistical strategies for looking at word place-
ment greatly helps the computer in creating
and organizing a sensible sentence. By look-
ing at the components of the sentence based
on their position with relation to other words,
as well as by comparing the computer’s gen-
erated hypotheses for translations in compar-
ison to other sentences of the same language,
it allows the computer to get a better frame
of reference as it develops better and better
hypotheses. N-grams, sets of words n words
long, are used in the area of statistical trans-
lation, as they allow the computer to look at
a specific number of words around its target.
If the computer were to try to look at each
word individually, then it would have little
luck in creating a sensible sentence. How-
ever, by looking at the word’s context and
other words around it, the computer can de-
termine where the word should go in relation
to the rest of the sentence and subsequently
create a more grammatically correct and un-
derstandable sentence.

By using these two methods, statistical
translation and word tagging, in conjunction
with each other, the computer can build the
best possible knowledge base in order to then
go about translating the sentence. The word
tagging gives the computer some information
ahead of time about how the word functions
in the sentence, as well as allowing it to asso-
ciate it with other words in the sentence in or-
der to make grammatical sense. At the same
time, statistical translation can make use of
this information to eliminate even more pos-
sible hypotheses, and narrow down its scope
so that way it can be more efficient in its

analysis of the hypotheses as well as reducing
the amount of work the statistical analysis
section has in terms of fixing the sentence so
that each of the components agree with each
other and make sense.

2 Background

The project tested in Two-Stage Hypotheses
Generation for Spoken Language Translation
used n-grams to generate multiple possible
translations for a given sentence and then sta-
tistically selected the best one based on a se-
ries of tests to ”score” each hypothesis. Their
method generated understandable and gram-
matically correct sentences that were largely
able to preserve the original meaning of the
sentence. This is one of the biggest challenges
of language translation, and so their success
reinforces the usefulness of n-grams in doing
so.

Figure 2: An equation used to determine
the accuracy of the hypotheses generated by
Chen et al.

McMahon and Smith also demonstrated
use of n-grams in word tagging for part of
speech purpose. They generated trees of the
most common words within a lexicon and
sorted them based on their context to deter-
mine what their part of speech was. They
applied their method not just to English, but
also to the collected works of Cicero in Latin.

2



I plan to attempt to implement a basic ver-
sion of what they did in order to identify im-
portant characteristics of the words, such as
case, tense, person, etc.

One method for translation used by Bow-
den covered the usage of possible word tags to
eliminate possibilities of what role the word
could fill in the sentence. This method al-
lowed for faster translation and deduction of
word order. I am implementing a similar
method on a smaller scale grammar-wise. By
combining this method with statistical trans-
lation strategies, I hope to be able to improve
on Bowden’s original research.

Other methods for translation have been
tested to find a replacement for use of n-
grams, particularly bigrams. One experiment
by Pla et al. attempted to combine sev-
eral methods for machine translation to cre-
ate one that would be overall more efficient
than bigrams, but their experiment showed
that bigrams were still slightly more efficient
than their own methods.

Alum et al. did an experiment with an-
other language in which their system for sta-
tistical analysis was analyzing part of speech
pairings. By doing this, they could eliminate
some obviously bad pairings, such as putting
the direct object after the subject. I will im-
plement a similar method by comparing the
parts of speech indicated by the Latin tenses,
and then arranging the sentence based on this
knowledge. I hope to improve on their origi-
nal findings, as their attempt did not end up
with very good results, largely in part due to
the problem of the corpus that they used.

Figure 3: An example of tagging for possible
characteristics of words from an experiment
by Bowden.

3 Design and Procedures

3.1 The Dictionary

My program uses two dictionary data struc-
tures in order to translate the Latin sentences
both accurately and quickly. The first dic-
tionary is a regular Latin dictionary, which
contains the important characteristics of the
words as well as several possible meanings for
each word. For the sake of this program, I
will be using the primary definition for each
word. The second dictionary is an index of
every word form translation that my program
will have translated. By doing this, as the
program translates more and more, it will be
able to run faster and faster by simply looking
up the indexed form of the word. This will
be most effective in translating large bodies
of text, as it will greatly increase the size of
this second dictionary and improve the pro-
gram’s proficiency.

3.2 Word Tagging

Once the dictionaries have been built and
read, the program begins its work on the in-
put sentence. It reads through each of the
words and determines whether the word is a
noun or a verb and then performs the tag-

3



ging and translation methods for that type
of word. The program identifies the word’s
primary characteristics by either locating its
genitive form, for nouns, or its infinitive form,
for verbs, in the dictionary. Once it has done
so, it can eliminate all other possible declen-
sions or conjugations and only focus on the
specific one. It then iterates over the set of
possible endings that that particular declen-
sion or conjugation can have. If the word
ends in one of those endings, then my pro-
gram affixes a tag to the word, identifying
what that form’s Case/Number/Gender or
Person/Number/Tense are. After identifying
all the possible tags, the word goes on to the
translation method.

3.3 Translation

After finishing the tagging, the word moves
on to the translation method. The transla-
tion method simply takes each of the word’s
tags and generates the translation for that
form of the word. It stores all of these forms
into the secondary dictionary once it has cre-
ated them, so that it can later simply recall
them should that form of the word come up
again. The process repeats for each word in
the sentence until every word has been tagged
and translated in all its possible forms.

4 Expected Results and

Discussion

I expect that my program will be able to
properly translate Latin sentences using the

Figure 4: A screenshot of the code as it prints
out now

methods detailed in my introuction and de-
sign procedures. I will test the program on
several sections of Latin, ranging from very
basic sentences to original Latin prose. Right
now, my program can currently fully trans-
late all nouns, and tag all verbs. Once I fin-
ish the translation for verbs, the next stage
will be to work on the ordering of the words in
the sentence. After that, I will concern myself
with adding in any additional grammar that
I can in order to improve the range of mate-
rial that my program can translate. Further
research in this area can be done to improve
the use of n-grams and their efficiency. In
addition, further research can be done in im-
proving statistical methods used to generate
the hypotheses for translation.

References

[1] Boxing Chen, Min Zhang, and AI TI
AW., ”Two-Stage Hypotheses Genera-
tion for Spoken Language Translation”,
ACM Trans. Asian Lang. Inform. Proc-
cess. 8, 1, Article 4, 22 pages March 2009

[2] J. McMahon and F.J. Smith ”Struc-

4



tural Tags, Annealing and Automatic
Word Classification”, Sruct. Tags, Word
Class., Queen’s University of Belfast,
May 1994

[3] Paul R. Bowden, ”Latin to English Ma-
chine Translation - A Direct Approach”,
The Machine Translation Review Issue
12, December 2001

[4] Ferran Pla, Antonio Molina, Nativi-
dad Prieto, ”Tagging and Chunking
with Bigrams”, Universitat Politbcnica
de Val5ncia, Departament de Sistemes
Informatics i Computaci6

5


