
Tagging and Statistically Translating Latin
Sentences

Andrew Runge
Computer Systems Lab 2009-2010

Abstract
 In developing language translation software, an increasingly
common method is to tag words based on their role in the
sentence in order to determine where they should be in the
sentence, and then put them in that slot to create a basic,
sometimes awkward translation. The goal of this project is to tag
the sentences and then use a new method of statistically
analyzing the words based on part of speech pairings in order to
generate the most sensible and accurate translation of a Latin
sentence.

Background
The biggest focus for language translation is to maintain the

original meaning of the sentence when it is translated. As such, it is
crucial not only to properly translate the words, but to maintain a
sensible word order in order to preserve the original meaning.
Machine learning methods, such as word tagging, allow the program
to rule out possibilities for what the possible functions of a given
word are. One such example used by McMahon and Smith was a
method for determining the role of words in a sentence based on
their context and similarities that they shared with other words.
Another experiment by Bowden discussed a method of tagging the
words for every possible set of characteristics they could have, and
then systematically narrowing down the possibilities until you can
more easily order the words based on their characteristics in Latin.
This is a similar method to the one that I am employing. After
identifying the words' roles in the sentence, then it is important to
put them in the correct order via statistical analysis. Chen et al.
demonstrate the effectiveness of statistical generation of sentence
structure with their project using n-grams to create possible
sentences. Another method of statistical analysis was demonstrated
in Alam et al. In which they generated sentences based on the
probability that two parts of speech could go together. Their program
suffered largely due to the tagging and original translation methods
that they used, but I intend to recreate the system they used for
sorting the words into the correct order.

Figure 2: Demonstration of n-gram generation for determining word order
in a sentence. Generated by Chen et al.

The Dictionary
My program uses to dictionaries in its translation. The first

is a basic Latin dictionary, from which I will generate the
meanings of the words. The second is a dictionary that is built
from experience the program has in translating. Each of the
words in that dictionary will be conjugated and declined forms of
verbs, nouns, adjectives, etc. that my program will read in so
that it can potentially save some time from having to generate
new translations of the same words each time.

Results and Conclusions
The goal for this project will be to create an efficient Latin

translator, which will both be able to identify key characteristics of
words, as well as organize them into a sensible English sentence. The
project will be tested on various forms of Latin prose and evaluated
compared to human translations of the same lines. As of now, the
program is able to perform much of the initial work needed to translate
Latin sentences, such as tagging the words and creating an easily
accessible dictionary to reference.

Tagging and Translation
The tagging process for my program consists of two major

steps. The program first goes through the sentence word by word
and determines each of the possible roles that the word could
play in the sentence by analyzing its endings. It then generates a
translation for each of those possible forms. To do that, it uses
basic translations for each of the cases or persons, depending on
if it is a verb or a noun. Once it has done this, it stores them into a
data structure, so that they can then move on to the second stage
and have some of these possibilities culled based on other words
in the sentence.

Figure 1: Sample of the method employed by Bowden to tag all words based on all
their possible sets of characteristics.

Figure 3: Sample of code as it tags various forms of nouns and translates
these forms

	Slide 1

